Drug cytotoxicity screening using human intestinal organoids propagated with extensive cost-reduction strategies
Organoids are regarded as physiologically relevant cell models and useful for compound screening for drug development; however, their applications are currently limited because of the high cost of their culture. We previously succeeded in reducing the cost of human intestinal organoid culture using...
Saved in:
Published in | Scientific reports Vol. 13; no. 1; p. 5407 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
03.04.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Organoids are regarded as physiologically relevant cell models and useful for compound screening for drug development; however, their applications are currently limited because of the high cost of their culture. We previously succeeded in reducing the cost of human intestinal organoid culture using conditioned medium (CM) of L cells co-expressing Wnt3a, R-spondin1, and Noggin. Here, we further reduced the cost by replacing recombinant hepatocyte growth factor with CM. Moreover, we showed that embedding organoids in collagen gel, a more inexpensive matrix than Matrigel, maintains organoid proliferation and marker gene expression similarly when using Matrigel. The combination of these replacements also enabled the organoid-oriented monolayer cell culture. Furthermore, screening thousands of compounds using organoids expanded with the refined method identified several compounds with more selective cytotoxicity against organoid-derived cells than Caco-2 cells. The mechanism of action of one of these compounds, YC-1, was further elucidated. We showed that YC-1 induces apoptosis through the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway, the mechanism of which was distinct from cell death caused by other hit compounds. Our cost-cutting methodology enables large-scale intestinal organoid culture and subsequent compound screening, which could expand the application of intestinal organoids in various research fields. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-023-32438-2 |