YBX1 integration of oncogenic PI3K/mTOR signalling regulates the fitness of malignant epithelial cells

In heterogeneous head and neck cancer (HNC), subtype-specific treatment regimens are currently missing. An integrated analysis of patient HNC subtypes using single-cell sequencing and proteome profiles reveals an epithelial-mesenchymal transition (EMT) signature within the epithelial cancer-cell pop...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; p. 1591
Main Authors Bai, Yuchen, Gotz, Carolin, Chincarini, Ginevra, Zhao, Zixuan, Slaney, Clare, Boath, Jarryd, Furic, Luc, Angel, Christopher, Jane, Stephen M., Phillips, Wayne A., Stacker, Steven A., Farah, Camile S., Darido, Charbel
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 22.03.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In heterogeneous head and neck cancer (HNC), subtype-specific treatment regimens are currently missing. An integrated analysis of patient HNC subtypes using single-cell sequencing and proteome profiles reveals an epithelial-mesenchymal transition (EMT) signature within the epithelial cancer-cell population. The EMT signature coincides with PI3K/mTOR inactivation in the mesenchymal subtype. Conversely, the signature is suppressed in epithelial cells of the basal subtype which exhibits hyperactive PI3K/mTOR signalling. We further identify YBX1 phosphorylation, downstream of the PI3K/mTOR pathway, restraining basal-like cancer cell proliferation. In contrast, YBX1 acts as a safeguard against the proliferation-to-invasion switch in mesenchymal-like epithelial cancer cells, and its loss accentuates partial-EMT and in vivo invasion. Interestingly, phospho-YBX1 that is mutually exclusive to partial-EMT, emerges as a prognostic marker for overall patient outcomes. These findings create a unique opportunity to sensitise mesenchymal cancer cells to PI3K/mTOR inhibitors by shifting them towards a basal-like subtype as a promising therapeutic approach against HNC. The understanding of molecular mechanisms in different subtypes of head and neck cancer (HNC) will define subtype-specific treatment options. Here the authors show that PI3K-phospho-YBX1 axis promotes tumour growth in basal subtype of HNC, while unphosphorylated YBX1 acts as a suppressor of metastasis in the mesenchymal subtype with inactive PI3K signalling.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-37161-0