Cytochalasin H enhances sensitivity to gefitinib in non-small-cell lung cancer cells through inhibiting EGFR activation and PD-L1 expression

In our previous study, we have isolated cytochalasin H (CyH) from endophytic fungus derived from mangrove plant and found that CyH inhibited the proliferation of non-small cell lung cancer (NSCLC) cells. Recently, epidermal growth factor receptor (EGFR) activation and programmed cell death 1 ligand...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 25276 - 13
Main Authors Zhang, Guihong, Liu, Jiao, Li, Sanzhong, Wang, Tianyu, Chen, Li, Li, Huan, Ding, Qingkai, Li, Xiangyong, Zhu, Shaoping, Tang, Xudong
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 25.10.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In our previous study, we have isolated cytochalasin H (CyH) from endophytic fungus derived from mangrove plant and found that CyH inhibited the proliferation of non-small cell lung cancer (NSCLC) cells. Recently, epidermal growth factor receptor (EGFR) activation and programmed cell death 1 ligand (PD-L1) expression have been demonstrated to mediate NSCLC resistance to gefitinib, first-generation EGFR tyrosine kinase inhibitor (EGFR-TKI). Here, we further investigated the effect of CyH on EGFR activation, PD-L1 expression, and gefitinib sensitivity in NSCLC cell lines, A549 (wild-type EGFR), HCC827 (EGFR mutation), and NCI-H1975 (dual EGFR mutations and acquired gefitinib resistance) and animal model. Our results showed that CyH significantly inhibited EGFR activation and PD-L1 expression in NSCLC cells. Additionally, CyH dramatically promoted the inhibitory effect of gefitinib on the proliferation of A549 and HCC827 cells, and enhanced the sensitivity to gefitinib in NCI-H1975 cells. Moreover, CyH increased the inhibitory effect of gefitinib on EGFR activation and PD-L1 expression in HCC827 and NCI-H1975 cells. Animal experiments further demonstrated that CyH significantly promoted the inhibitory effect of gefitinib on the growth of NSCLC and the expression of Ki-67, p-EGFR, and PD-L1 in NCI-H1975 NSCLC xenograft tumors of nude mice. Furthermore, CyH inhibited the activation of JAK3/STAT signaling pathway. Taken together, our findings suggest that CyH promotes the sensitivity to gefitinib in NSCLC cells through the inhibition of EGFR activation and PD-L1 expression.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-76060-2