A raster-based spatial clustering method with robustness to spatial outliers

Spatial clustering is an essential method for the comprehensive understanding of a region. Spatial clustering divides all spatial units into different clusters. The attributes of each cluster of the spatial units are similar, and simultaneously, they are as continuous as spatially possible. In spati...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 4103 - 14
Main Authors Wang, Haoyu, Song, Changqing, Wang, Jinfeng, Gao, Peichao
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 19.02.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Spatial clustering is an essential method for the comprehensive understanding of a region. Spatial clustering divides all spatial units into different clusters. The attributes of each cluster of the spatial units are similar, and simultaneously, they are as continuous as spatially possible. In spatial clustering, the handling of spatial outliers is important. It is necessary to improve spatial integration so that each cluster is connected as much as possible, while protecting spatial outliers can help avoid the excessive masking of attribute differences This paper proposes a new spatial clustering method for raster data robust to spatial outliers. The method employs a sliding window to scan the entire region to determine spatial outliers. Additionally, a mechanism based on the range and standard deviation of the spatial units in each window is designed to judge whether the spatial integration should be further improved or the spatial outliers should be protected. To demonstrate the usefulness of the proposed method, we applied it in two case study areas, namely, Changping District and Pinggu District in Beijing. The results show that the proposed method can retain the spatial outliers while ensuring that the clusters are roughly contiguous. This method can be used as a simple but powerful and easy-to-interpret alternative to existing geographical spatial clustering methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-53066-4