Aloe-emodin-mediated photodynamic therapy induces autophagy and apoptosis in human osteosarcoma cell line MG-63 through the ROS/JNK signaling pathway

The present study was carried out to investigate the effect and mechanisms of aloe-emodin (AE)-mediated photodynamic therapy (AE-PDT) on the human osteosarcoma cell line MG-63. After treatment with AE-PDT, the human osteosarcoma cell line MG-63 was tested for levels of viability, autophagy, reactive...

Full description

Saved in:
Bibliographic Details
Published inOncology reports Vol. 35; no. 6; pp. 3209 - 3215
Main Authors TU, PINGHUA, HUANG, QIU, OU, YUNSHENG, DU, XING, LI, KAITING, TAO, YONG, YIN, HANG
Format Journal Article
LanguageEnglish
Published Greece D.A. Spandidos 01.06.2016
Spandidos Publications
Spandidos Publications UK Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The present study was carried out to investigate the effect and mechanisms of aloe-emodin (AE)-mediated photodynamic therapy (AE-PDT) on the human osteosarcoma cell line MG-63. After treatment with AE-PDT, the human osteosarcoma cell line MG-63 was tested for levels of viability, autophagy, reactive oxygen species (ROS) and apoptosis and changes in cell morphology with the Cell Counting Kit-8 (CCK-8), monodansylcadaverine (MDC) and Hoechst staining and transmission electron microscopy. The expression of proteins including LC-3, cleaved caspase-3, Beclin-1, Bcl-2, p-JNK, t-JNK and β-actin was examined with western blotting. AE-PDT significantly inhibited the viability of the MG-63 cells in an AE-concentration- and PDT energy density-dependent manner. Autophagy and apoptosis of MG-63 cells was substantially promoted in the AE-PDT group compared to the control group, the AE alone group and the light emitting diode (LED) alone group. Inhibition of autophagy by 3-meth-yladenine (3-MA) (5 mM) and chloroquine (CQ) (15 µM) significantly promoted the apoptosis rate and improved the sensitivity of the MG-63 cells to AE-PDT. AE-PDT was found to induce the expression of ROS and p-JNK. ROS scavenger, N-acetyl-L-cysteine (NAC, 5 mM), was able to hinder the autophagy, apoptosis and phosphorylation of JNK, and JNK inhibitor (SP600125, 10 µM) significantly inhibited the autophagy and apoptosis, and attenuated the sensitivity of MG63 cells to AE-PDT. In conclusion, AE-PDT induced the autophagy and apoptosis of human osteosarcoma cell line MG-63 through the activation of the ROS-JNK signaling pathway. Autophagy may play a protective role during the early stage following treatment of AE-PDT.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Contributed equally
ISSN:1021-335X
1791-2431
DOI:10.3892/or.2016.4703