Oxymatrine triggers apoptosis by regulating Bcl-2 family proteins and activating caspase-3/caspase-9 pathway in human leukemia HL-60 cells

With the objective of identifying promising antitumor agents for human leukemia, we carried out to determine the anticancer ability of oxymatrine on the human leukemia HL-60 cell line. In vitro experiments demonstrated that oxymatrine reduced the proliferation of HL-60 cells in a dose- and time-depe...

Full description

Saved in:
Bibliographic Details
Published inTumor biology Vol. 35; no. 6; pp. 5409 - 5415
Main Authors Liu, Jun, Yao, Yazhou, Ding, Huifang, Chen, Renan
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.06.2014
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:With the objective of identifying promising antitumor agents for human leukemia, we carried out to determine the anticancer ability of oxymatrine on the human leukemia HL-60 cell line. In vitro experiments demonstrated that oxymatrine reduced the proliferation of HL-60 cells in a dose- and time-dependent manner via the induction of apoptosis and cell cycle arrest at G 2 /M and S phases. The proteins involved in oxymatrine-induced apoptosis in HL-60 cells were also examined using Western blot. The increase in apoptosis upon treatment with oxymatrine was correlated with downregulation of anti-apoptotic Bcl-2 expression and upregulation of pro-apoptotic Bax expression. Furthermore, oxymatrine induced the activation of caspase-3 and caspase-9 and the cleavage of poly(ADP-ribose) polymerase (PARP) in HL-60 cells. In addition, pretreatment with a specific caspase-3 (Z-DEVD-FMK) or caspase-9 (Z-LEHD-FMK) inhibitor significantly neutralized the pro-apoptotic activity of oxymatrine in HL-60 cells, demonstrating the important role of caspase-3 and caspase-9 in this process. Taken together, these results indicated that oxymatrine-induced apoptosis may occur through the activation of the caspase-9/caspase-3-mediated intrinsic pathway. Therefore, oxymatrine may be a potential candidate for the treatment of human leukemia.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1010-4283
1423-0380
DOI:10.1007/s13277-014-1705-7