Programmable nanophotonic planar resonator filter-absorber based on phase-change InSbTe
Reconfigurable plasmonic-photonic electromagnetic devices have been incessantly investigated for their great ability to optically modulate through external stimuli to meet today's emerging needs, with chalcogenide phase-change materials being promising candidates due to their remarkably unique...
Saved in:
Published in | Scientific reports Vol. 13; no. 1; p. 13225 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
14.08.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Reconfigurable plasmonic-photonic electromagnetic devices have been incessantly investigated for their great ability to optically modulate through external stimuli to meet today's emerging needs, with chalcogenide phase-change materials being promising candidates due to their remarkably unique electrical and optics, enabling new perspectives in recent photonic applications. In this work, we propose a reconfigurable resonator using planar layers of stacked ultrathin films based on Metal-dielectric-PCM, which we designed and analyzed numerically by the Finite Element Method (FEM). The structure is based on thin films of Gold (Au), aluminum oxide (Al
2
O
3
), and PCM (In
3
SbTe
2
) used as substrate. The modulation between the PCM phases (amorphous and crystalline) allows the alternation from the filter to the absorber structure in the infrared (IR) spectrum (1000–2500 nm), with an efficiency greater than 70% in both cases. The influence of the thickness of the material is also analyzed to verify tolerances for manufacturing errors and dynamically control the efficiency of transmittance and absorptance peaks. The physical mechanisms of field coupling and transmitted/absorbed power density are investigated. We also analyzed the effects on polarization angles for Transversal Electric (TE) and Transversal Magnetic (TM) polarized waves for both cases. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-023-40269-4 |