Effect of Bacterial Amyloid Protein Phenol−Soluble Modulin Alpha 3 on the Aggregation of Amyloid Beta Protein Associated with Alzheimer’s Disease

Since the proposal of the brainstem axis theory, increasing research attention has been paid to the interactions between bacterial amyloids produced by intestinal flora and the amyloid β−protein (Aβ) related to Alzheimer’s disease (AD), and it has been considered as the possible cause of AD. Therefo...

Full description

Saved in:
Bibliographic Details
Published inBiomimetics (Basel, Switzerland) Vol. 8; no. 6; p. 459
Main Authors Peng, Bushu, Xu, Shaoying, Liang, Yue, Dong, Xiaoyan, Sun, Yan
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Since the proposal of the brainstem axis theory, increasing research attention has been paid to the interactions between bacterial amyloids produced by intestinal flora and the amyloid β−protein (Aβ) related to Alzheimer’s disease (AD), and it has been considered as the possible cause of AD. Therefore, phenol−soluble modulin (PSM) α3, the most virulent protein secreted by Staphylococcus aureus, has attracted much attention. In this work, the effect of PSMα3 with a unique cross−α fibril architecture on the aggregation of pathogenic Aβ40 of AD was studied by extensive biophysical characterizations. The results proposed that the PSMα3 monomer inhibited the aggregation of Aβ40 in a concentration−dependent manner and changed the aggregation pathway to form granular aggregates. However, PSMα3 oligomers promoted the generation of the β−sheet structure, thus shortening the lag phase of Aβ40 aggregation. Moreover, the higher the cross−α content of PSMα3, the stronger the effect of the promotion, indicating that the cross−α structure of PSMα3 plays a crucial role in the aggregation of Aβ40. Further molecular dynamics (MD) simulations have shown that the Met1−Gly20 region in the PSMα3 monomer can be combined with the Asp1−Ala2 and His13−Val36 regions in the Aβ40 monomer by hydrophobic and electrostatic interactions, which prevents the conformational conversion of Aβ40 from the α−helix to β−sheet structure. By contrast, PSMα3 oligomers mainly combined with the central hydrophobic core (CHC) and the C−terminal region of the Aβ40 monomer by weak H−bonding and hydrophobic interactions, which could not inhibit the transition to the β−sheet structure in the aggregation pathway. Thus, the research has unraveled molecular interactions between Aβ40 and PSMα3 of different structures and provided a deeper understanding of the complex interactions between bacterial amyloids and AD−related pathogenic Aβ.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2313-7673
2313-7673
DOI:10.3390/biomimetics8060459