Time-reversal even charge hall effect from twisted interface coupling

Under time-reversal symmetry, a linear charge Hall response is usually deemed to be forbidden by the Onsager relation. In this work, we discover a scenario for realizing a time-reversal even linear charge Hall effect in a non-isolated two-dimensional crystal allowed by time reversal symmetry. The re...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; p. 1961
Main Authors Zhai, Dawei, Chen, Cong, Xiao, Cong, Yao, Wang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 07.04.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Under time-reversal symmetry, a linear charge Hall response is usually deemed to be forbidden by the Onsager relation. In this work, we discover a scenario for realizing a time-reversal even linear charge Hall effect in a non-isolated two-dimensional crystal allowed by time reversal symmetry. The restriction by Onsager relation is lifted by interfacial coupling with an adjacent layer, where the overall chiral symmetry requirement is fulfilled by a twisted stacking. We reveal the underlying band geometric quantity as the momentum-space vorticity of layer current. The effect is demonstrated in twisted bilayer graphene and twisted homobilayer transition metal dichalcogenides with a wide range of twist angles, which exhibit giant Hall ratios under experimentally practical conditions, with gate voltage controlled on-off switch. This work reveals intriguing Hall physics in chiral structures, and opens up a research direction of layertronics that exploits the quantum nature of layer degree of freedom to uncover exciting effects. A linear Hall response in isolated systems with time reversal symmetry is forbidden by Onsager relations. Here the authors show that this restriction is lifted by interlayer hopping in twisted bilayers, leading to a linear charge Hall effect under time reversal symmetry.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-37644-0