Nucleus accumbens core acetylcholine receptors modulate the balance of flexible and inflexible cue-directed motivation

Sign-tracking is a conditioned response where animals interact with reward-predictive cues due to the cues having motivational value, or incentive salience. The nucleus accumbens core (NAc) has been implicated in mediating the sign-tracking response. Additionally, acetylcholine (ACh) transmission th...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; p. 13375
Main Authors Townsend, Erica S., Amaya, Kenneth A., Smedley, Elizabeth B., Smith, Kyle S.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 17.08.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Sign-tracking is a conditioned response where animals interact with reward-predictive cues due to the cues having motivational value, or incentive salience. The nucleus accumbens core (NAc) has been implicated in mediating the sign-tracking response. Additionally, acetylcholine (ACh) transmission throughout the striatum has been attributed to both incentive motivation and behavioral flexibility. Here, we demonstrate a role for NAc ACh receptors in the flexibility of sign-tracking. Sign-tracking animals were exposed to an omission contingency, in which vigorous sign-tracking was punished by reward omission. Animals rapidly adjusted their behavior, but they maintained sign-tracking in a less vigorous manner that did not cancel reward. Within this context of sign-tracking being persistent yet flexible in structure, blockade of NAc nicotinic receptors (nAChRs) led to a persistence in the initial sign-tracking response during omission followed by a period of change in the makeup of sign-tracking, whereas blockade of muscarinic receptors (mAChRs) oppositely enhanced the omission-related development of the new sign-tracking behaviors. Later, once omission learning had occurred, nAChR blockade uniquely led to reduced sign-tracking and elevated reward-directed behaviors instead. These results indicate that NAc ACh receptors have opposing roles in maintaining learned patterns of sign-tracking, with nAChRs having a special involvement in regulating the structure of the sign-tracking response.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-40439-4