Kinetics of the self-assembly of nanocrystal superlattices measured by real-time in situ X-ray scattering
On solvent evaporation, non-interacting monodisperse colloidal particles self-assemble into a close-packed superlattice. Although the initial and final states can be readily characterized, little is known about the dynamic transformation from colloid to superlattice. Here, by using in situ grazing-i...
Saved in:
Published in | Nature materials Vol. 15; no. 7; pp. 775 - 781 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.07.2016
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | On solvent evaporation, non-interacting monodisperse colloidal particles self-assemble into a close-packed superlattice. Although the initial and final states can be readily characterized, little is known about the dynamic transformation from colloid to superlattice. Here, by using
in situ
grazing-incidence X-ray scattering, we tracked the self-assembly of lead sulfide nanocrystals in real time. Following the first appearance of an ordered arrangement, the superlattice underwent uniaxial contraction and collective rotation as it approached its final body-centred cubic structure. The nanocrystals became crystallographically aligned early in the overall self-assembly process, showing that nanocrystal ordering occurs on a faster timescale than superlattice densification. Our findings demonstrate that synchrotron X-ray scattering is a viable method for studying self-assembly in its native environment, with ample time resolution to extract kinetic rates and observe intermediate configurations. The method could be used for real-time direction of self-assembly processes and to better understand the forces governing self-organization of soft materials.
The self-assembly of lead sulfide nanocrystals into a body-centred cubic lattice can be tracked in real time by using
in situ
grazing-incidence X-ray scattering. |
---|---|
AbstractList | On solvent evaporation, non-interacting monodisperse colloidal particles self-assemble into a close-packed superlattice. Although the initial and final states can be readily characterized, little is known about the dynamic transformation from colloid to superlattice. Here, by using in situ grazing-incidence X-ray scattering, we tracked the self-assembly of lead sulfide nanocrystals in real time. Following the first appearance of an ordered arrangement, the superlattice underwent uniaxial contraction and collective rotation as it approached its final body-centred cubic structure. The nanocrystals became crystallographically aligned early in the overall self-assembly process, showing that nanocrystal ordering occurs on a faster timescale than superlattice densification. Our findings demonstrate that synchrotron X-ray scattering is a viable method for studying self-assembly in its native environment, with ample time resolution to extract kinetic rates and observe intermediate configurations. The method could be used for real-time direction of self-assembly processes and to better understand the forces governing self-organization of soft materials.On solvent evaporation, non-interacting monodisperse colloidal particles self-assemble into a close-packed superlattice. Although the initial and final states can be readily characterized, little is known about the dynamic transformation from colloid to superlattice. Here, by using in situ grazing-incidence X-ray scattering, we tracked the self-assembly of lead sulfide nanocrystals in real time. Following the first appearance of an ordered arrangement, the superlattice underwent uniaxial contraction and collective rotation as it approached its final body-centred cubic structure. The nanocrystals became crystallographically aligned early in the overall self-assembly process, showing that nanocrystal ordering occurs on a faster timescale than superlattice densification. Our findings demonstrate that synchrotron X-ray scattering is a viable method for studying self-assembly in its native environment, with ample time resolution to extract kinetic rates and observe intermediate configurations. The method could be used for real-time direction of self-assembly processes and to better understand the forces governing self-organization of soft materials. On solvent evaporation, non-interacting monodisperse colloidal particles self-assemble into a close-packed superlattice. Although the initial and final states can be readily characterized, little is known about the dynamic transformation from colloid to superlattice. Here, by using in situ grazing-incidence X-ray scattering, we tracked the self-assembly of lead sulfide nanocrystals in real time. Following the first appearance of an ordered arrangement, the superlattice underwent uniaxial contraction and collective rotation as it approached its final body-centred cubic structure. The nanocrystals became crystallographically aligned early in the overall self-assembly process, showing that nanocrystal ordering occurs on a faster timescale than superlattice densification. Our findings demonstrate that synchrotron X-ray scattering is a viable method for studying self-assembly in its native environment, with ample time resolution to extract kinetic rates and observe intermediate configurations. The method could be used for real-time direction of self-assembly processes and to better understand the forces governing self-organization of soft materials. On solvent evaporation, non-interacting monodisperse colloidal particles self-assemble into a close-packed superlattice. Although the initial and nal states can be readily characterized, little is known about the dynamic transformation from colloid to superlattice. Here, by using in situ grazing-incidence X-ray scattering, we tracked the self-assembly of lead sulde nanocrystals in real time. Following the rst appearance of an ordered arrangement, the superlattice underwent uniaxial contraction and collective rotation as it approached its nal body-centred cubic structure. The nanocrystals became crystallographically aligned early in the overall self-assembly process, showing that nanocrystal ordering occurs on a faster timescale than superlattice densication. Our ndings demonstrate that synchrotron X-ray scattering is a viable method for studying self-assembly in its native environment, with ample time resolution to extract kinetic rates and observe intermediate congurations. The method could be used for real-time direction of self-assembly processes and to better understand the forces governing self-organization of soft materials. On solvent evaporation, non-interacting monodisperse colloidal particles self-assemble into a close-packed superlattice. Although the initial and final states can be readily characterized, little is known about the dynamic transformation from colloid to superlattice. Here, by using in situ grazing-incidence X-ray scattering, we tracked the self-assembly of lead sulfide nanocrystals in real time. Following the first appearance of an ordered arrangement, the superlattice underwent uniaxial contraction and collective rotation as it approached its final body-centred cubic structure. The nanocrystals became crystallographically aligned early in the overall self-assembly process, showing that nanocrystal ordering occurs on a faster timescale than superlattice densification. Our findings demonstrate that synchrotron X-ray scattering is a viable method for studying self-assembly in its native environment, with ample time resolution to extract kinetic rates and observe intermediate configurations. The method could be used for real-time direction of self-assembly processes and to better understand the forces governing self-organization of soft materials. The self-assembly of lead sulfide nanocrystals into a body-centred cubic lattice can be tracked in real time by using in situ grazing-incidence X-ray scattering. |
Author | Weidman, Mark C. Tisdale, William A. Smilgies, Detlef-M. |
Author_xml | – sequence: 1 givenname: Mark C. surname: Weidman fullname: Weidman, Mark C. organization: Department of Chemical Engineering, Massachusetts Institute of Technology – sequence: 2 givenname: Detlef-M. surname: Smilgies fullname: Smilgies, Detlef-M. organization: Cornell High Energy Synchrotron Source (CHESS), Cornell University – sequence: 3 givenname: William A. orcidid: 0000-0002-6615-5342 surname: Tisdale fullname: Tisdale, William A. email: tisdale@mit.edu organization: Department of Chemical Engineering, Massachusetts Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26998914$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1371222$$D View this record in Osti.gov |
BookMark | eNqF0c2K1TAUB_AgI86Hgk8gQTfjomNOmvY2y2FwVBxwo-AupOmJk0ubXnPSRd_GZ_HJ7KX3qgyCq4TwO8k5-Z-zkzhGZOw5iCsQZfMmDjarWohH7AzUpi5UXYuTwx5AylN2TrQVQkJV1U_Yqay1bjSoM7b9GCLm4IiPnud75IS9LywRDm0_7w-jjaNLM2Xbc5p2mHqblwIkPqClKWHH25kntH2Rw4A8RE4hT_xrkez88we5hWMK8dtT9tjbnvDZYb1gX27ffr55X9x9evfh5vqucJWCXJTgodSqldqrCpyTyrWd76Atse60d64Sne461VpRObDSexBtLaQqZd14r8sL9nK9d6QcDLmQ0d27MUZ02UC5Wf5DLuhyRbs0fp-QshkCOex7G3GcyEAjq0pCLZr_043WEhQ0m4W-ekC345TiMu2qZCNh__aLg5raATuzS2GwaTbHVBZwtQKXRqKE3ixD2BzGmJMNvQFh9rGbY-x_WvxdcLzzH_T1Smm3DwXTXy0-tL8A14670A |
CitedBy_id | crossref_primary_10_1021_jacs_2c11120 crossref_primary_10_1063_5_0030529 crossref_primary_10_1021_acs_nanolett_8b01860 crossref_primary_10_1021_acs_nanolett_4c02636 crossref_primary_10_1038_s41598_023_27558_8 crossref_primary_10_1021_acsami_8b06044 crossref_primary_10_1021_jacs_9b06010 crossref_primary_10_1038_s41467_024_46230_x crossref_primary_10_1002_adom_202401252 crossref_primary_10_3390_ma12223771 crossref_primary_10_1002_ange_201916402 crossref_primary_10_1021_jacs_0c01809 crossref_primary_10_1007_s10853_021_06292_4 crossref_primary_10_1021_acs_jpclett_1c00254 crossref_primary_10_1021_acs_nanolett_0c02013 crossref_primary_10_1038_s41467_021_22947_x crossref_primary_10_1002_smll_201900438 crossref_primary_10_1021_acsnano_0c00076 crossref_primary_10_1007_s40843_019_1219_y crossref_primary_10_1021_acs_nanolett_1c00860 crossref_primary_10_1038_s41467_018_04801_9 crossref_primary_10_1016_j_cossms_2018_12_002 crossref_primary_10_1021_acsomega_7b01791 crossref_primary_10_1038_s41586_018_0512_5 crossref_primary_10_1039_D0SM00838A crossref_primary_10_1039_C8NR04606A crossref_primary_10_1021_acs_nanolett_7b00584 crossref_primary_10_1038_nature23308 crossref_primary_10_1002_adma_201800082 crossref_primary_10_1021_acs_jpcc_8b06996 crossref_primary_10_1002_ppsc_202100087 crossref_primary_10_1002_ppsc_201900323 crossref_primary_10_1016_j_jcis_2018_03_034 crossref_primary_10_1002_anie_201803552 crossref_primary_10_1002_adma_201802265 crossref_primary_10_1021_acsnano_9b07820 crossref_primary_10_1039_C7NR02194A crossref_primary_10_1557_s43580_024_00859_4 crossref_primary_10_1038_s44160_023_00407_2 crossref_primary_10_1002_admi_201600431 crossref_primary_10_1017_S1431927621008023 crossref_primary_10_1021_acs_nanolett_9b01142 crossref_primary_10_1021_acsaelm_1c01011 crossref_primary_10_1021_acs_chemmater_0c04151 crossref_primary_10_1021_acsnano_0c03800 crossref_primary_10_3390_nano10112240 crossref_primary_10_1021_acs_nanolett_7b01323 crossref_primary_10_1021_acs_chemmater_1c02910 crossref_primary_10_1021_acs_jpcc_2c07484 crossref_primary_10_1021_acsnano_2c06167 crossref_primary_10_1021_jacs_3c14603 crossref_primary_10_1002_ange_202104812 crossref_primary_10_1002_adom_202302062 crossref_primary_10_1016_j_nanoen_2020_105254 crossref_primary_10_1038_s41467_023_38216_y crossref_primary_10_1002_adfm_201807658 crossref_primary_10_1038_s42004_020_0275_4 crossref_primary_10_1021_acsnano_8b07880 crossref_primary_10_1039_D0MA00072H crossref_primary_10_3390_cryst15010063 crossref_primary_10_1021_acs_nanolett_1c00890 crossref_primary_10_1007_s12274_021_4022_7 crossref_primary_10_1021_acsami_1c19193 crossref_primary_10_1002_advs_202307396 crossref_primary_10_1002_anie_202104812 crossref_primary_10_1126_science_aaz8541 crossref_primary_10_1021_acs_langmuir_1c02804 crossref_primary_10_1021_acs_chemmater_7b04223 crossref_primary_10_1039_C7TA06060B crossref_primary_10_1002_advs_202408416 crossref_primary_10_1038_s41467_018_06734_9 crossref_primary_10_1126_sciadv_aaw5623 crossref_primary_10_1007_s11051_019_4512_7 crossref_primary_10_1039_D0NH00008F crossref_primary_10_1557_mrs_2020_229 crossref_primary_10_1002_smll_202106880 crossref_primary_10_1038_s41598_017_02121_4 crossref_primary_10_1021_acsnano_8b01643 crossref_primary_10_1002_smll_202106768 crossref_primary_10_1021_acs_accounts_0c00739 crossref_primary_10_1002_admi_202201039 crossref_primary_10_1021_acs_jpclett_9b00869 crossref_primary_10_1021_acs_jpcc_2c03348 crossref_primary_10_1021_acs_langmuir_0c00524 crossref_primary_10_1063_1_5085231 crossref_primary_10_1021_acs_chemmater_9b03268 crossref_primary_10_1038_s43586_024_00293_8 crossref_primary_10_1016_j_mtphys_2024_101431 crossref_primary_10_1021_acs_chemmater_9b01767 crossref_primary_10_1021_acs_nanolett_6b02586 crossref_primary_10_1002_adma_201703316 crossref_primary_10_1021_acs_nanolett_7b01237 crossref_primary_10_1021_acs_nanolett_3c00299 crossref_primary_10_1002_adma_202210749 crossref_primary_10_1021_acs_chemrev_2c00700 crossref_primary_10_3390_bios14080393 crossref_primary_10_1063_5_0072017 crossref_primary_10_1021_acs_jpclett_3c02614 crossref_primary_10_1039_D0NR08312G crossref_primary_10_1039_D4SC05188B crossref_primary_10_1039_D4SM01265H crossref_primary_10_1002_adma_202002254 crossref_primary_10_3390_nano10112207 crossref_primary_10_1021_acsomega_2c04785 crossref_primary_10_1039_C9CP04658E crossref_primary_10_1002_smll_201801083 crossref_primary_10_3390_ma12213464 crossref_primary_10_1021_acs_jpcc_4c06965 crossref_primary_10_1038_s41467_020_19461_x crossref_primary_10_1016_j_cej_2023_148260 crossref_primary_10_1038_s41467_018_06395_8 crossref_primary_10_1021_acs_jpclett_9b01282 crossref_primary_10_1021_acs_jpcc_7b10778 crossref_primary_10_1021_acs_jpcc_0c02853 crossref_primary_10_1021_acs_jpclett_9b02373 crossref_primary_10_1039_C8NR01163J crossref_primary_10_1021_acs_chemmater_8b02178 crossref_primary_10_1021_acs_jpclett_9b01841 crossref_primary_10_1002_ange_201803552 crossref_primary_10_1021_acs_nanolett_0c01579 crossref_primary_10_1039_D3CC03292B crossref_primary_10_1021_acsnano_9b03052 crossref_primary_10_1021_acs_jpcc_1c07430 crossref_primary_10_26599_NR_2025_94907183 crossref_primary_10_1021_acsnano_3c12186 crossref_primary_10_1038_s41467_021_24614_7 crossref_primary_10_1021_acs_macromol_2c01984 crossref_primary_10_1021_acsnano_5c01223 crossref_primary_10_1002_smll_201702575 crossref_primary_10_1021_jacs_3c05299 crossref_primary_10_1002_adom_202402740 crossref_primary_10_1016_j_matt_2022_09_027 crossref_primary_10_1021_acs_cgd_3c00022 crossref_primary_10_1021_acs_jpcc_1c02430 crossref_primary_10_1038_nmat4746 crossref_primary_10_1021_acs_jpclett_7b03187 crossref_primary_10_1038_s41928_021_00632_7 crossref_primary_10_1038_s41467_019_12305_3 crossref_primary_10_1021_acsnano_9b05914 crossref_primary_10_1021_acsnano_3c03466 crossref_primary_10_1021_jacs_7b06908 crossref_primary_10_1126_sciadv_aaw2399 crossref_primary_10_1021_acs_nanolett_8b00809 crossref_primary_10_1002_adma_201802078 crossref_primary_10_1021_jacs_9b06889 crossref_primary_10_1021_acs_chemmater_2c03153 crossref_primary_10_1021_acsenergylett_0c01453 crossref_primary_10_1039_C9NR05908C crossref_primary_10_1021_acsnano_4c04076 crossref_primary_10_1021_acs_chemmater_9b01686 crossref_primary_10_1016_j_jcis_2020_04_054 crossref_primary_10_1016_j_jcis_2023_01_004 crossref_primary_10_1021_acs_jpclett_7b03278 crossref_primary_10_1021_acsnano_4c08439 crossref_primary_10_1021_acs_nanolett_4c00875 crossref_primary_10_1021_acs_jpcc_8b11518 crossref_primary_10_1021_acs_cgd_9b01523 crossref_primary_10_1021_acsnano_1c11130 crossref_primary_10_1021_acs_jpcc_8b08413 crossref_primary_10_1021_acs_nanolett_6b04201 crossref_primary_10_1002_adfm_202000594 crossref_primary_10_1002_adma_202304069 crossref_primary_10_1016_j_cossms_2024_101159 crossref_primary_10_1021_acsnano_9b04951 crossref_primary_10_1002_admi_201900031 crossref_primary_10_3390_cryst7070207 crossref_primary_10_1021_acs_jpcb_2c07937 crossref_primary_10_1021_acs_chemmater_7b04322 crossref_primary_10_1002_smll_201906146 crossref_primary_10_1021_acs_cgd_1c01084 crossref_primary_10_1209_0295_5075_119_28003 crossref_primary_10_1038_s41467_020_16560_7 crossref_primary_10_1039_D3FD00109A crossref_primary_10_1021_acsnano_9b00006 crossref_primary_10_1002_adma_202200185 crossref_primary_10_1038_s41565_024_01831_x crossref_primary_10_1039_D4SM00795F crossref_primary_10_1021_acs_chemmater_3c01636 crossref_primary_10_1021_acs_langmuir_6b03570 crossref_primary_10_1038_s41563_019_0485_2 crossref_primary_10_1021_acs_chemmater_0c00984 crossref_primary_10_1021_acs_jpclett_7b01595 crossref_primary_10_1021_acs_jpcb_9b08310 crossref_primary_10_1039_D0NH00526F crossref_primary_10_1021_acsami_0c18851 crossref_primary_10_1021_acs_langmuir_9b01290 crossref_primary_10_1038_nmat4773 crossref_primary_10_1002_smll_202311714 crossref_primary_10_1021_acs_jpcc_0c02805 crossref_primary_10_1007_s12274_019_2483_8 crossref_primary_10_1038_ncomms15257 crossref_primary_10_1021_acsnano_8b06706 crossref_primary_10_1021_acs_jpclett_9b02622 crossref_primary_10_1021_acsnano_2c02014 crossref_primary_10_1021_acs_nanolett_8b04817 crossref_primary_10_1021_acsomega_7b02031 crossref_primary_10_1021_jacs_3c01286 crossref_primary_10_1021_jacs_0c12087 crossref_primary_10_1039_D0CS00541J crossref_primary_10_1186_s11671_021_03635_7 crossref_primary_10_1246_bcsj_20180310 crossref_primary_10_1080_02678292_2016_1225834 crossref_primary_10_1021_acsami_6b06989 crossref_primary_10_1021_acs_nanolett_7b03123 crossref_primary_10_1039_C6CC07878H crossref_primary_10_1021_acs_langmuir_6b04319 crossref_primary_10_1039_D2NH00548D crossref_primary_10_1063_1_5082685 crossref_primary_10_1021_acsnano_0c00668 crossref_primary_10_1021_jacs_8b10752 crossref_primary_10_1038_s41563_022_01438_4 crossref_primary_10_1002_anie_201916402 crossref_primary_10_1021_jacs_9b01033 crossref_primary_10_1039_D0TA06704K crossref_primary_10_1021_acs_chemrev_6b00196 crossref_primary_10_1038_s41467_017_00844_6 crossref_primary_10_1002_rpm_20240009 crossref_primary_10_1002_adma_201707077 crossref_primary_10_1021_acs_macromol_8b02273 crossref_primary_10_1021_jacs_2c12993 crossref_primary_10_1021_acs_jpcc_4c03174 crossref_primary_10_1002_smll_201904954 crossref_primary_10_1021_acs_chemmater_1c02962 crossref_primary_10_1103_PhysRevLett_124_060201 crossref_primary_10_1063_1_5108904 crossref_primary_10_1039_D1NR05436H crossref_primary_10_1021_acsnano_3c10201 crossref_primary_10_1021_acs_chemmater_1c02159 crossref_primary_10_1021_acs_chemmater_8b02691 crossref_primary_10_1063_5_0031692 crossref_primary_10_1039_C9LC00192A crossref_primary_10_1021_acsanm_8b00473 |
Cites_doi | 10.1107/S0021889806012337 10.1021/nn103303q 10.1038/nnano.2012.63 10.1126/science.1142593 10.1021/ja408250q 10.1038/nature09188 10.1126/science.270.5240.1335 10.1116/1.4705402 10.1021/nn203837m 10.1063/1.3689973 10.1002/jcc.23152 10.1021/cm503626s 10.1038/nature04414 10.1126/science.271.5251.933 10.1021/nl803174p 10.1038/179119a0 10.1002/adma.201404636 10.1038/nnano.2012.127 10.1021/cr900137k 10.1021/ja110454b 10.1021/nl302324b 10.1063/1.882495 10.1021/nn5018654 10.1021/ja103083q 10.1103/PhysRevB.59.14191 10.1126/science.1252727 10.1107/S0021889807023382 10.1038/204990a0 10.1021/ja8085438 10.1038/ncomms7912 10.1038/nmat3984 10.1021/ja400948t 10.1021/nn506223h 10.1021/acs.jpclett.5b00946 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2016 Copyright Nature Publishing Group Jul 2016 |
Copyright_xml | – notice: Springer Nature Limited 2016 – notice: Copyright Nature Publishing Group Jul 2016 |
CorporateAuthor | Energy Frontier Research Centers (EFRC) (United States). Center for Excitonics (CE) |
CorporateAuthor_xml | – name: Energy Frontier Research Centers (EFRC) (United States). Center for Excitonics (CE) |
DBID | AAYXX CITATION NPM 3V. 7SR 7X7 7XB 88E 88I 8AO 8BQ 8FD 8FE 8FG 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ JG9 K9. KB. L6V M0S M1P M2P M7S PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 7U5 L7M OTOTI |
DOI | 10.1038/nmat4600 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Engineered Materials Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection ProQuest Health & Medical Collection Medical Database Science Database Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic MEDLINE - Academic Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Engineered Materials Abstracts ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection Materials Science Database ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) METADEX ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1476-4660 |
EndPage | 781 |
ExternalDocumentID | 1371222 4099171231 26998914 10_1038_nmat4600 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- 0R~ 29M 39C 3V. 4.4 5BI 70F 7X7 88E 88I 8AO 8FE 8FG 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFS ACGOD ACIWK ACUHS ADBBV AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BKKNO BPHCQ BVXVI CCPQU CZ9 D1I DB5 DU5 DWQXO EBS EE. EJD EMOBN ESN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ I-F KB. KC. L6V M1P M2P M7S MK~ NNMJJ O9- ODYON P2P PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RIG RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ACSTC AFANA ALPWD ATHPR CITATION PHGZM PHGZT ABFSG AEZWR AFHIU AHWEU AIXLP NFIDA NPM PJZUB PPXIY PQGLB 7SR 7XB 8BQ 8FD 8FK JG9 K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 7U5 L7M AADEA AADWK AAEXX AAJMP AAPBV AAYJO ABEEJ ABGIJ ABPTK ABVXF ACBMV ACBRV ACBYP ACIGE ACTTH ACVWB ADMDM ADQMX ADZGE AEDAW AEFTE AGEZK AGGBP AHGBK AJDOV NYICJ OTOTI |
ID | FETCH-LOGICAL-c541t-31f1394b29f451cc24cbdfd1b3e6d9fcc50d9dd4ba05c1a2ff10b60243268ff93 |
IEDL.DBID | 7X7 |
ISSN | 1476-1122 1476-4660 |
IngestDate | Fri May 19 00:38:36 EDT 2023 Fri Jul 11 03:02:33 EDT 2025 Fri Jul 11 10:17:14 EDT 2025 Sat Aug 23 14:57:35 EDT 2025 Mon Jul 21 06:01:49 EDT 2025 Tue Jul 01 02:13:57 EDT 2025 Thu Apr 24 23:02:00 EDT 2025 Fri Feb 21 02:40:30 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-31f1394b29f451cc24cbdfd1b3e6d9fcc50d9dd4ba05c1a2ff10b60243268ff93 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22) SC0001088 |
ORCID | 0000-0002-6615-5342 0000000266155342 |
PMID | 26998914 |
PQID | 1799228212 |
PQPubID | 27576 |
PageCount | 7 |
ParticipantIDs | osti_scitechconnect_1371222 proquest_miscellaneous_1825521608 proquest_miscellaneous_1799214187 proquest_journals_1799228212 pubmed_primary_26998914 crossref_citationtrail_10_1038_nmat4600 crossref_primary_10_1038_nmat4600 springer_journals_10_1038_nmat4600 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-07-01 |
PublicationDateYYYYMMDD | 2016-07-01 |
PublicationDate_xml | – month: 07 year: 2016 text: 2016-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: United States |
PublicationTitle | Nature materials |
PublicationTitleAbbrev | Nature Mater |
PublicationTitleAlternate | Nat Mater |
PublicationYear | 2016 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Quan (CR15) 2012; 12 Shevchenko, Talapin, Kotov, O’Brien, Murray (CR6) 2006; 439 Williams, Smith (CR1) 1957; 179 Sun (CR20) 2012; 7 Murray, Kagan, Bawendi (CR5) 1995; 270 Bodnarchuk, Kovalenko, Heiss, Talapin (CR8) 2010; 132 Korgel, Fitzmaurice (CR9) 1999; 59 Alivisatos (CR3) 1996; 271 Weidman, Beck, Hoffman, Prins, Tisdale (CR22) 2014; 8 Dong, Chen, Vora, Kikkawa, Murray (CR11) 2010; 466 Jones, Segnit, Sanders (CR2) 1964; 204 Kaushik, Clancy (CR32) 2013; 34 Chuang, Brown, Bulović, Bawendi (CR19) 2014; 13 Hanrath (CR13) 2012; 30 Bain (CR29) 1924; 70 Lu, Yager, Zhang, Xin, Gang (CR17) 2015; 6 Busch, Rauscher, Smilgies, Posselt, Papadakis (CR35) 2006; 39 Bian (CR27) 2011; 5 Talapin, Lee, Kovalenko, Shevchenko (CR12) 2010; 110 Choi, Ko, Kim, Jeong (CR23) 2013; 135 Robinson (CR10) 2007; 317 Park (CR14) 2012; 6 Kovalenko (CR4) 2015; 9 Quan (CR16) 2014; 136 Crossland (CR30) 2009; 9 Weidman, Yager, Tisdale (CR26) 2015; 27 Ip (CR18) 2012; 7 Goodfellow, Yu, Bosoy, Smilgies, Korgel (CR28) 2015; 6 Gast, Russel (CR33) 1998; 51 Zherebetskyy (CR25) 2014; 344 Choi (CR24) 2011; 133 Smith, Goodfellow, Smilgies, Korgel (CR7) 2009; 131 Supran (CR21) 2015; 27 Smilgies, Blasini (CR34) 2007; 40 Kaushik, Clancy (CR31) 2012; 136 T Hanrath (BFnmat4600_CR13) 2012; 30 L Sun (BFnmat4600_CR20) 2012; 7 EJW Crossland (BFnmat4600_CR30) 2009; 9 CM Chuang (BFnmat4600_CR19) 2014; 13 K Bian (BFnmat4600_CR27) 2011; 5 GJ Supran (BFnmat4600_CR21) 2015; 27 AP Kaushik (BFnmat4600_CR31) 2012; 136 BW Goodfellow (BFnmat4600_CR28) 2015; 6 DK Smith (BFnmat4600_CR7) 2009; 131 J Park (BFnmat4600_CR14) 2012; 6 Z Quan (BFnmat4600_CR16) 2014; 136 A Dong (BFnmat4600_CR11) 2010; 466 AP Kaushik (BFnmat4600_CR32) 2013; 34 RC Williams (BFnmat4600_CR1) 1957; 179 EC Bain (BFnmat4600_CR29) 1924; 70 AP Alivisatos (BFnmat4600_CR3) 1996; 271 JJ Choi (BFnmat4600_CR24) 2011; 133 EV Shevchenko (BFnmat4600_CR6) 2006; 439 BA Korgel (BFnmat4600_CR9) 1999; 59 RD Robinson (BFnmat4600_CR10) 2007; 317 MV Kovalenko (BFnmat4600_CR4) 2015; 9 MC Weidman (BFnmat4600_CR26) 2015; 27 DV Talapin (BFnmat4600_CR12) 2010; 110 F Lu (BFnmat4600_CR17) 2015; 6 MC Weidman (BFnmat4600_CR22) 2014; 8 Z Quan (BFnmat4600_CR15) 2012; 12 JB Jones (BFnmat4600_CR2) 1964; 204 CB Murray (BFnmat4600_CR5) 1995; 270 AH Ip (BFnmat4600_CR18) 2012; 7 H Choi (BFnmat4600_CR23) 2013; 135 P Busch (BFnmat4600_CR35) 2006; 39 MI Bodnarchuk (BFnmat4600_CR8) 2010; 132 D-M Smilgies (BFnmat4600_CR34) 2007; 40 AP Gast (BFnmat4600_CR33) 1998; 51 D Zherebetskyy (BFnmat4600_CR25) 2014; 344 25903309 - Nat Commun. 2015 Apr 23;6:6912 25639896 - Adv Mater. 2015 Feb 25;27(8):1437-42 23496143 - J Am Chem Soc. 2013 Apr 10;135(14):5278-81 22562037 - Nat Nanotechnol. 2012 May 06;7(6):369-73 21344877 - ACS Nano. 2011 Apr 26;5(4):2815-23 20701285 - J Am Chem Soc. 2010 Sep 1;132(34):11967-77 16397494 - Nature. 2006 Jan 5;439(7072):55-9 25608730 - ACS Nano. 2015 Feb 24;9(2):1012-57 19216526 - J Am Chem Soc. 2009 Mar 11;131(9):3281-90 22842552 - Nat Nanotechnol. 2012 Sep;7(9):577-82 24840645 - ACS Nano. 2014 Jun 24;8(6):6363-71 24397381 - J Am Chem Soc. 2014 Jan 29;136(4):1352-9 24859641 - Nat Mater. 2014 Aug;13(8):796-801 17641197 - Science. 2007 Jul 20;317(5836):355-8 22443785 - J Chem Phys. 2012 Mar 21;136(11):114702 23109263 - J Comput Chem. 2013 Mar 15;34(7):523-32 24876347 - Science. 2014 Jun 20;344(6190):1380-4 22813064 - Nano Lett. 2012 Aug 8;12(8):4409-13 20651688 - Nature. 2010 Jul 22;466(7305):474-7 19958036 - Chem Rev. 2010 Jan;110(1):389-458 22360715 - ACS Nano. 2012 Mar 27;6(3):2078-85 26266710 - J Phys Chem Lett. 2015 Jul 2;6(13):2406-12 13400114 - Nature. 1957 Jan 19;179(4551):119-20 21306161 - J Am Chem Soc. 2011 Mar 9;133(9):3131-8 19007289 - Nano Lett. 2009 Aug;9(8):2807-12 |
References_xml | – volume: 39 start-page: 433 year: 2006 end-page: 442 ident: CR35 article-title: Grazing-incidence small-angle X-ray scattering from thin polymer films with lamellar structures - the scattering cross section in the distorted-wave Born approximation publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889806012337 – volume: 5 start-page: 2815 year: 2011 end-page: 2823 ident: CR27 article-title: Shape-anisotropy driven symmetry transformations in nanocrystal superlattice polymorphs publication-title: ACS Nano doi: 10.1021/nn103303q – volume: 7 start-page: 369 year: 2012 end-page: 373 ident: CR20 article-title: Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control publication-title: Nature Nanotech. doi: 10.1038/nnano.2012.63 – volume: 317 start-page: 355 year: 2007 end-page: 358 ident: CR10 article-title: Spontaneous superlattice formation in nanorods through partial cation exchange publication-title: Science doi: 10.1126/science.1142593 – volume: 136 start-page: 1352 year: 2014 end-page: 1359 ident: CR16 article-title: Solvent-mediated self-assembly of nanocube superlattices publication-title: J. Am. Chem. Soc. doi: 10.1021/ja408250q – volume: 70 start-page: 25 year: 1924 end-page: 46 ident: CR29 article-title: The nature of martensite publication-title: Trans. Am. Inst. Min. Metall. Eng. – volume: 466 start-page: 474 year: 2010 end-page: 477 ident: CR11 article-title: Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface publication-title: Nature doi: 10.1038/nature09188 – volume: 270 start-page: 1335 year: 1995 end-page: 1338 ident: CR5 article-title: Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices publication-title: Science doi: 10.1126/science.270.5240.1335 – volume: 30 start-page: 030802 year: 2012 ident: CR13 article-title: Colloidal nanocrystal quantum dot assemblies as artificial solids publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.4705402 – volume: 6 start-page: 2078 year: 2012 end-page: 2085 ident: CR14 article-title: Direct observation of nanoparticle superlattice formation by using liquid cell transmission electron microscopy publication-title: ACS Nano doi: 10.1021/nn203837m – volume: 136 start-page: 114702 year: 2012 ident: CR31 article-title: Explicit all-atom modeling of realistically sized ligand-capped nanocrystals publication-title: J. Chem. Phys. doi: 10.1063/1.3689973 – volume: 34 start-page: 523 year: 2013 end-page: 532 ident: CR32 article-title: Solvent-driven symmetry of self-assembled nanocrystal superlattices—a computational study publication-title: J. Comput. Chem. doi: 10.1002/jcc.23152 – volume: 27 start-page: 474 year: 2015 end-page: 482 ident: CR26 article-title: Interparticle spacing and structural ordering in superlattice PbS nanocrystal solids undergoing ligand exchange publication-title: Chem. Mater. doi: 10.1021/cm503626s – volume: 439 start-page: 55 year: 2006 end-page: 59 ident: CR6 article-title: Structural diversity in binary nanoparticle superlattices publication-title: Nature doi: 10.1038/nature04414 – volume: 271 start-page: 933 year: 1996 end-page: 937 ident: CR3 article-title: Semiconductor clusters, nanocrystals, and quantum dots publication-title: Science doi: 10.1126/science.271.5251.933 – volume: 9 start-page: 2807 year: 2009 end-page: 2812 ident: CR30 article-title: A bicontinuous double gyroid hybrid solar cell publication-title: Nano Lett. doi: 10.1021/nl803174p – volume: 179 start-page: 119 year: 1957 end-page: 120 ident: CR1 article-title: Crystallizable insect virus publication-title: Nature doi: 10.1038/179119a0 – volume: 27 start-page: 1437 year: 2015 end-page: 1442 ident: CR21 article-title: High-performance shortwave-infrared light-emitting devices using core-shell (PbS-CdS) colloidal quantum dots publication-title: Adv. Mater. doi: 10.1002/adma.201404636 – volume: 7 start-page: 577 year: 2012 end-page: 582 ident: CR18 article-title: Hybrid passivated colloidal quantum dot solids publication-title: Nature Nanotech. doi: 10.1038/nnano.2012.127 – volume: 110 start-page: 389 year: 2010 end-page: 458 ident: CR12 article-title: Prospects of colloidal nanocrystals for electronic and optoelectronic applications publication-title: Chem. Rev. doi: 10.1021/cr900137k – volume: 133 start-page: 3131 year: 2011 end-page: 3138 ident: CR24 article-title: Controlling nanocrystal superlattice symmetry and shape-anisotropic interactions through variable ligand surface coverage publication-title: J. Am. Chem. Soc. doi: 10.1021/ja110454b – volume: 12 start-page: 4409 year: 2012 end-page: 4413 ident: CR15 article-title: Tilted face-centered-cubic supercrystals of PbS nanocubes publication-title: Nano Lett. doi: 10.1021/nl302324b – volume: 51 start-page: 24 year: 1998 end-page: 30 ident: CR33 article-title: Simple ordering in complex fluids publication-title: Phys. Today doi: 10.1063/1.882495 – volume: 8 start-page: 6363 year: 2014 end-page: 6371 ident: CR22 article-title: Monodisperse, air-stable PbS nanocrystals via precursor stoichiometry control publication-title: ACS Nano doi: 10.1021/nn5018654 – volume: 132 start-page: 11967 year: 2010 end-page: 11977 ident: CR8 article-title: Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: temperature as the structure-directing factor publication-title: J. Am. Chem. Soc. doi: 10.1021/ja103083q – volume: 59 start-page: 14191 year: 1999 end-page: 14201 ident: CR9 article-title: Small-angle X-ray-scattering study of silver-nanocrystal disorder-order phase transitions publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.14191 – volume: 344 start-page: 1380 year: 2014 end-page: 1384 ident: CR25 article-title: Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid publication-title: Science doi: 10.1126/science.1252727 – volume: 40 start-page: 716 year: 2007 end-page: 718 ident: CR34 article-title: Indexation scheme for oriented molecular thin films studied with grazing-incidence reciprocal-space mapping publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889807023382 – volume: 204 start-page: 990 year: 1964 end-page: 991 ident: CR2 article-title: Structure of opal publication-title: Nature doi: 10.1038/204990a0 – volume: 131 start-page: 3281 year: 2009 end-page: 3290 ident: CR7 article-title: Self-assembled simple hexagonal AB2 binary nanocrystal superlattices: SEM, GISAXS, and defects publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8085438 – volume: 6 start-page: 6912 year: 2015 ident: CR17 article-title: Superlattices assembled through shape-induced directional binding publication-title: Nature Commun. doi: 10.1038/ncomms7912 – volume: 13 start-page: 796 year: 2014 end-page: 801 ident: CR19 article-title: Improved performance and stability in quantum dot solar cells through band alignment engineering publication-title: Nature Mater. doi: 10.1038/nmat3984 – volume: 135 start-page: 5278 year: 2013 end-page: 5281 ident: CR23 article-title: Steric-hindrance-driven shape transition in PbS quantum dots: understanding size-dependent stability publication-title: J. Am. Chem. Soc. doi: 10.1021/ja400948t – volume: 9 start-page: 1012 year: 2015 end-page: 1057 ident: CR4 article-title: Prospects of nanoscience with nanocrystals publication-title: ACS Nano doi: 10.1021/nn506223h – volume: 6 start-page: 2406 year: 2015 end-page: 2412 ident: CR28 article-title: The role of ligand packing frustration in body-centered cubic (bcc) superlattices of colloidal nanocrystals publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b00946 – volume: 466 start-page: 474 year: 2010 ident: BFnmat4600_CR11 publication-title: Nature doi: 10.1038/nature09188 – volume: 271 start-page: 933 year: 1996 ident: BFnmat4600_CR3 publication-title: Science doi: 10.1126/science.271.5251.933 – volume: 5 start-page: 2815 year: 2011 ident: BFnmat4600_CR27 publication-title: ACS Nano doi: 10.1021/nn103303q – volume: 136 start-page: 114702 year: 2012 ident: BFnmat4600_CR31 publication-title: J. Chem. Phys. doi: 10.1063/1.3689973 – volume: 136 start-page: 1352 year: 2014 ident: BFnmat4600_CR16 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja408250q – volume: 27 start-page: 474 year: 2015 ident: BFnmat4600_CR26 publication-title: Chem. Mater. doi: 10.1021/cm503626s – volume: 317 start-page: 355 year: 2007 ident: BFnmat4600_CR10 publication-title: Science doi: 10.1126/science.1142593 – volume: 6 start-page: 2406 year: 2015 ident: BFnmat4600_CR28 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b00946 – volume: 6 start-page: 6912 year: 2015 ident: BFnmat4600_CR17 publication-title: Nature Commun. doi: 10.1038/ncomms7912 – volume: 27 start-page: 1437 year: 2015 ident: BFnmat4600_CR21 publication-title: Adv. Mater. doi: 10.1002/adma.201404636 – volume: 344 start-page: 1380 year: 2014 ident: BFnmat4600_CR25 publication-title: Science doi: 10.1126/science.1252727 – volume: 7 start-page: 369 year: 2012 ident: BFnmat4600_CR20 publication-title: Nature Nanotech. doi: 10.1038/nnano.2012.63 – volume: 8 start-page: 6363 year: 2014 ident: BFnmat4600_CR22 publication-title: ACS Nano doi: 10.1021/nn5018654 – volume: 9 start-page: 2807 year: 2009 ident: BFnmat4600_CR30 publication-title: Nano Lett. doi: 10.1021/nl803174p – volume: 9 start-page: 1012 year: 2015 ident: BFnmat4600_CR4 publication-title: ACS Nano doi: 10.1021/nn506223h – volume: 12 start-page: 4409 year: 2012 ident: BFnmat4600_CR15 publication-title: Nano Lett. doi: 10.1021/nl302324b – volume: 179 start-page: 119 year: 1957 ident: BFnmat4600_CR1 publication-title: Nature doi: 10.1038/179119a0 – volume: 131 start-page: 3281 year: 2009 ident: BFnmat4600_CR7 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8085438 – volume: 133 start-page: 3131 year: 2011 ident: BFnmat4600_CR24 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja110454b – volume: 34 start-page: 523 year: 2013 ident: BFnmat4600_CR32 publication-title: J. Comput. Chem. doi: 10.1002/jcc.23152 – volume: 70 start-page: 25 year: 1924 ident: BFnmat4600_CR29 publication-title: Trans. Am. Inst. Min. Metall. Eng. – volume: 135 start-page: 5278 year: 2013 ident: BFnmat4600_CR23 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja400948t – volume: 51 start-page: 24 year: 1998 ident: BFnmat4600_CR33 publication-title: Phys. Today doi: 10.1063/1.882495 – volume: 30 start-page: 030802 year: 2012 ident: BFnmat4600_CR13 publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.4705402 – volume: 39 start-page: 433 year: 2006 ident: BFnmat4600_CR35 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889806012337 – volume: 59 start-page: 14191 year: 1999 ident: BFnmat4600_CR9 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.14191 – volume: 40 start-page: 716 year: 2007 ident: BFnmat4600_CR34 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889807023382 – volume: 132 start-page: 11967 year: 2010 ident: BFnmat4600_CR8 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja103083q – volume: 110 start-page: 389 year: 2010 ident: BFnmat4600_CR12 publication-title: Chem. Rev. doi: 10.1021/cr900137k – volume: 13 start-page: 796 year: 2014 ident: BFnmat4600_CR19 publication-title: Nature Mater. doi: 10.1038/nmat3984 – volume: 439 start-page: 55 year: 2006 ident: BFnmat4600_CR6 publication-title: Nature doi: 10.1038/nature04414 – volume: 204 start-page: 990 year: 1964 ident: BFnmat4600_CR2 publication-title: Nature doi: 10.1038/204990a0 – volume: 270 start-page: 1335 year: 1995 ident: BFnmat4600_CR5 publication-title: Science doi: 10.1126/science.270.5240.1335 – volume: 6 start-page: 2078 year: 2012 ident: BFnmat4600_CR14 publication-title: ACS Nano doi: 10.1021/nn203837m – volume: 7 start-page: 577 year: 2012 ident: BFnmat4600_CR18 publication-title: Nature Nanotech. doi: 10.1038/nnano.2012.127 – reference: 22562037 - Nat Nanotechnol. 2012 May 06;7(6):369-73 – reference: 22360715 - ACS Nano. 2012 Mar 27;6(3):2078-85 – reference: 22813064 - Nano Lett. 2012 Aug 8;12(8):4409-13 – reference: 17641197 - Science. 2007 Jul 20;317(5836):355-8 – reference: 23496143 - J Am Chem Soc. 2013 Apr 10;135(14):5278-81 – reference: 22842552 - Nat Nanotechnol. 2012 Sep;7(9):577-82 – reference: 19216526 - J Am Chem Soc. 2009 Mar 11;131(9):3281-90 – reference: 24859641 - Nat Mater. 2014 Aug;13(8):796-801 – reference: 24876347 - Science. 2014 Jun 20;344(6190):1380-4 – reference: 20701285 - J Am Chem Soc. 2010 Sep 1;132(34):11967-77 – reference: 25639896 - Adv Mater. 2015 Feb 25;27(8):1437-42 – reference: 16397494 - Nature. 2006 Jan 5;439(7072):55-9 – reference: 26266710 - J Phys Chem Lett. 2015 Jul 2;6(13):2406-12 – reference: 21306161 - J Am Chem Soc. 2011 Mar 9;133(9):3131-8 – reference: 25608730 - ACS Nano. 2015 Feb 24;9(2):1012-57 – reference: 21344877 - ACS Nano. 2011 Apr 26;5(4):2815-23 – reference: 19958036 - Chem Rev. 2010 Jan;110(1):389-458 – reference: 13400114 - Nature. 1957 Jan 19;179(4551):119-20 – reference: 20651688 - Nature. 2010 Jul 22;466(7305):474-7 – reference: 23109263 - J Comput Chem. 2013 Mar 15;34(7):523-32 – reference: 22443785 - J Chem Phys. 2012 Mar 21;136(11):114702 – reference: 24840645 - ACS Nano. 2014 Jun 24;8(6):6363-71 – reference: 25903309 - Nat Commun. 2015 Apr 23;6:6912 – reference: 24397381 - J Am Chem Soc. 2014 Jan 29;136(4):1352-9 – reference: 19007289 - Nano Lett. 2009 Aug;9(8):2807-12 |
SSID | ssj0021556 |
Score | 2.5995111 |
Snippet | On solvent evaporation, non-interacting monodisperse colloidal particles self-assemble into a close-packed superlattice. Although the initial and final states... On solvent evaporation, non-interacting monodisperse colloidal particles self-assemble into a close-packed superlattice. Although the initial and nal states... |
SourceID | osti proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 775 |
SubjectTerms | 639/301/357/1017 639/301/357/341 639/925/357/1017 639/925/357/341 Biomaterials Colloids Condensed Matter Physics Evaporation Kinetics Materials Science Nanocrystals Nanotechnology Optical and Electronic Materials Order disorder Real time Scattering Self assembly solar (photovoltaic), solid state lighting, photosynthesis (natural and artificial), charge transport, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing) Solvents Superlattices X-rays |
Title | Kinetics of the self-assembly of nanocrystal superlattices measured by real-time in situ X-ray scattering |
URI | https://link.springer.com/article/10.1038/nmat4600 https://www.ncbi.nlm.nih.gov/pubmed/26998914 https://www.proquest.com/docview/1799228212 https://www.proquest.com/docview/1799214187 https://www.proquest.com/docview/1825521608 https://www.osti.gov/biblio/1371222 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbt5tIeSvp2kwa1FHoSWcmyZJ9KW7INLQ2lNLA3oycEHHu79h7232fGj83ShlyMHwOWNCPpG2n0DSEftI8mhtywEKJm0nvJ4DmwzEoVZIQpuc9D9vNCnV_K78tsOS64tWNY5TQm9gO1bxyukZ8ic5kA_4CLT6u_DLNG4e7qmELjITlA6jK0ar28dbhgrhxOF2nFAFeIiXw2zU9rwINS4bm2velo1kC3ugtq_rdN2s8-i0PyZISN9POg56fkQaifkcd7ZILPydUPuEfSZdpECrCOtqGKDLBxuLbVFl_Wpm7cegt4sKLtZoUreR3GvrX0elgp9NRuKaDIimHKeXpVU6j9hi7Z2mxp63oqTvjXC3K5OPvz9ZyNiRSYyyTvYJyNAPSkFUWUGXdOSGd99NymQfkiOpfNfQFqsmaeOW5EjHxuFXIVCpXHWKQvyaxu6vCa0NRoAVr3SOMiY5RG6CxEm3GlvVTOJeTj1J6lG1nGMdlFVfa73WleTi2fkHc7ydXArHGHzBGqpAQ0gJS2DmN_XFfyVIM2RUKOJ02VY89ry1s7gR_sPkOfwY0QU4dmM8pwyXN9jwy4zgBt1DxPyKvBCnbFFAqc1ILLhLyfzGKvAP_U4c39pTwijwCDqSEC-JjMuvUmvAWc09mT3pjhmi--nZCDL2cXv37fAPPFAe4 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq5QAcEOUZ2oJBIE5W147jZA-oqoBly7Y9tdLeQvySKqXJsskK5U_xG5nJY1lB1VtveYwUxzP2fGOPvyHkfWx95l2SMed8zKS1ksG9Y5GWykkPLrmtQ3Z2rmaX8vsiWuyQ38NZGEyrHObEdqK2pcE18kNkLhMQH3BxtPzJsGoU7q4OJTQ6s5i75heEbNWnky-g3w9CTL9efJ6xvqoAM5HkNUw6HlCP1GLiZcSNEdJo6y3XoVN24o2JxnYCbdbZODI8E97zsVZI3CdU4j2SL8GUf0-G4MnxZPr02ybAA9_cnWaKFQMcIway2zA5LAB_SoXn6Lbc36iEYXwTtP1vW7b1dtPH5FEPU-lxZ1e7ZMcVT8jDLfLCp-RqDtdI8kxLTwFG0srlngEWd9c6b_BhkRWlWTWAP3NarZe4clhjrl1Fr7uVSUt1QwG15gxL3NOrgkJvr-mCrbKGVqal_oRvPSOXd9LFz8moKAv3ktAwiwVYmUXaGOm9zEQcOa8jrmIrlTEB-Tj0Z2p6VnMsrpGn7e56mKRDzwfk7UZy2TF53CCzhypJAX0gha7BXCNTpzyMQZsiIPuDptJ-pFfpX7uED2xewxjFjZescOW6l-GSJ_EtMhCqA5RS4yQgLzor2DRTKAiKJ1wG5N1gFlsN-OcfXt3eyjfk_uzi7DQ9PTmf75EHgP9Ul328T0b1au0OAGPV-nVr2JT8uOuR9AfBLD1q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrYTggMqzoQUMAnGydu11nOwBIaBdtSysKkSlvYX4JVVKk-0mK5S_xq9jJo9lBVVvveUxUhx7ZvyNPf6GkDeR9al3ccqc8xGT1koG946FWionPUzJTR2yb3N1ci6_LMLFDvndn4XBtMreJzaO2hYG18iHyFwmID7gYui7tIizo-mH5RXDClK409qX02hVZObqXxC-le9Pj2Cs3woxPf7x-YR1FQaYCSWvwAF5QEBSi4mXITdGSKOtt1yPnbITb0w4shNov05HoeGp8J6PtEISP6Fi75GICdz_boRR0YDsfjqen33fhHswU7dnmyLFANWInvp2HA9zQKNS4am6rclwUIBRXwd0_9ukbea-6R6534FW-rHVsgdkx-UPyb0tKsNH5GIG10j5TAtPAVTS0mWeATJ3lzqr8WGe5oVZ1YBGM1qul7iOWGHmXUkv23VKS3VNAcNmDAve04ucQn-v6YKt0pqWpiEChW89Jue30slPyCAvcrdP6DiNBOicRRIZ6b1MRRQ6r0OuIiuVMQF51_dnYjqOcyy1kSXNXvs4TvqeD8irjeSy5fW4RuYAhyQBLIKEugYzj0yV8HEEoykCctiPVNLZfZn81VL4wOY1WCxuw6S5K9adDJc8jm6QgcAdgJUaxQF52mrBpplCQYg84TIgr3u12GrAP__w7OZWviR3wIqSr6fz2QG5C2BQtanIh2RQrdbuOQCuSr_oNJuSn7dtTH8Al0lC_A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinetics+of+the+self-assembly+of+nanocrystal+superlattices+measured+by+real-time+in+situ+X-ray+scattering&rft.jtitle=Nature+materials&rft.au=Weidman%2C+Mark+C&rft.au=Smilgies%2C+Detlef-M&rft.au=Tisdale%2C+William+A&rft.date=2016-07-01&rft.issn=1476-4660&rft.eissn=1476-4660&rft.volume=15&rft.issue=7&rft.spage=775&rft_id=info:doi/10.1038%2Fnmat4600&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon |