Kinetics of the self-assembly of nanocrystal superlattices measured by real-time in situ X-ray scattering

On solvent evaporation, non-interacting monodisperse colloidal particles self-assemble into a close-packed superlattice. Although the initial and final states can be readily characterized, little is known about the dynamic transformation from colloid to superlattice. Here, by using in situ grazing-i...

Full description

Saved in:
Bibliographic Details
Published inNature materials Vol. 15; no. 7; pp. 775 - 781
Main Authors Weidman, Mark C., Smilgies, Detlef-M., Tisdale, William A.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.07.2016
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract On solvent evaporation, non-interacting monodisperse colloidal particles self-assemble into a close-packed superlattice. Although the initial and final states can be readily characterized, little is known about the dynamic transformation from colloid to superlattice. Here, by using in situ grazing-incidence X-ray scattering, we tracked the self-assembly of lead sulfide nanocrystals in real time. Following the first appearance of an ordered arrangement, the superlattice underwent uniaxial contraction and collective rotation as it approached its final body-centred cubic structure. The nanocrystals became crystallographically aligned early in the overall self-assembly process, showing that nanocrystal ordering occurs on a faster timescale than superlattice densification. Our findings demonstrate that synchrotron X-ray scattering is a viable method for studying self-assembly in its native environment, with ample time resolution to extract kinetic rates and observe intermediate configurations. The method could be used for real-time direction of self-assembly processes and to better understand the forces governing self-organization of soft materials. The self-assembly of lead sulfide nanocrystals into a body-centred cubic lattice can be tracked in real time by using in situ grazing-incidence X-ray scattering.
AbstractList On solvent evaporation, non-interacting monodisperse colloidal particles self-assemble into a close-packed superlattice. Although the initial and final states can be readily characterized, little is known about the dynamic transformation from colloid to superlattice. Here, by using in situ grazing-incidence X-ray scattering, we tracked the self-assembly of lead sulfide nanocrystals in real time. Following the first appearance of an ordered arrangement, the superlattice underwent uniaxial contraction and collective rotation as it approached its final body-centred cubic structure. The nanocrystals became crystallographically aligned early in the overall self-assembly process, showing that nanocrystal ordering occurs on a faster timescale than superlattice densification. Our findings demonstrate that synchrotron X-ray scattering is a viable method for studying self-assembly in its native environment, with ample time resolution to extract kinetic rates and observe intermediate configurations. The method could be used for real-time direction of self-assembly processes and to better understand the forces governing self-organization of soft materials.On solvent evaporation, non-interacting monodisperse colloidal particles self-assemble into a close-packed superlattice. Although the initial and final states can be readily characterized, little is known about the dynamic transformation from colloid to superlattice. Here, by using in situ grazing-incidence X-ray scattering, we tracked the self-assembly of lead sulfide nanocrystals in real time. Following the first appearance of an ordered arrangement, the superlattice underwent uniaxial contraction and collective rotation as it approached its final body-centred cubic structure. The nanocrystals became crystallographically aligned early in the overall self-assembly process, showing that nanocrystal ordering occurs on a faster timescale than superlattice densification. Our findings demonstrate that synchrotron X-ray scattering is a viable method for studying self-assembly in its native environment, with ample time resolution to extract kinetic rates and observe intermediate configurations. The method could be used for real-time direction of self-assembly processes and to better understand the forces governing self-organization of soft materials.
On solvent evaporation, non-interacting monodisperse colloidal particles self-assemble into a close-packed superlattice. Although the initial and final states can be readily characterized, little is known about the dynamic transformation from colloid to superlattice. Here, by using in situ grazing-incidence X-ray scattering, we tracked the self-assembly of lead sulfide nanocrystals in real time. Following the first appearance of an ordered arrangement, the superlattice underwent uniaxial contraction and collective rotation as it approached its final body-centred cubic structure. The nanocrystals became crystallographically aligned early in the overall self-assembly process, showing that nanocrystal ordering occurs on a faster timescale than superlattice densification. Our findings demonstrate that synchrotron X-ray scattering is a viable method for studying self-assembly in its native environment, with ample time resolution to extract kinetic rates and observe intermediate configurations. The method could be used for real-time direction of self-assembly processes and to better understand the forces governing self-organization of soft materials.
On solvent evaporation, non-interacting monodisperse colloidal particles self-assemble into a close-packed superlattice. Although the initial and nal states can be readily characterized, little is known about the dynamic transformation from colloid to superlattice. Here, by using in situ grazing-incidence X-ray scattering, we tracked the self-assembly of lead sulde nanocrystals in real time. Following the rst appearance of an ordered arrangement, the superlattice underwent uniaxial contraction and collective rotation as it approached its nal body-centred cubic structure. The nanocrystals became crystallographically aligned early in the overall self-assembly process, showing that nanocrystal ordering occurs on a faster timescale than superlattice densication. Our ndings demonstrate that synchrotron X-ray scattering is a viable method for studying self-assembly in its native environment, with ample time resolution to extract kinetic rates and observe intermediate congurations. The method could be used for real-time direction of self-assembly processes and to better understand the forces governing self-organization of soft materials.
On solvent evaporation, non-interacting monodisperse colloidal particles self-assemble into a close-packed superlattice. Although the initial and final states can be readily characterized, little is known about the dynamic transformation from colloid to superlattice. Here, by using in situ grazing-incidence X-ray scattering, we tracked the self-assembly of lead sulfide nanocrystals in real time. Following the first appearance of an ordered arrangement, the superlattice underwent uniaxial contraction and collective rotation as it approached its final body-centred cubic structure. The nanocrystals became crystallographically aligned early in the overall self-assembly process, showing that nanocrystal ordering occurs on a faster timescale than superlattice densification. Our findings demonstrate that synchrotron X-ray scattering is a viable method for studying self-assembly in its native environment, with ample time resolution to extract kinetic rates and observe intermediate configurations. The method could be used for real-time direction of self-assembly processes and to better understand the forces governing self-organization of soft materials. The self-assembly of lead sulfide nanocrystals into a body-centred cubic lattice can be tracked in real time by using in situ grazing-incidence X-ray scattering.
Author Weidman, Mark C.
Tisdale, William A.
Smilgies, Detlef-M.
Author_xml – sequence: 1
  givenname: Mark C.
  surname: Weidman
  fullname: Weidman, Mark C.
  organization: Department of Chemical Engineering, Massachusetts Institute of Technology
– sequence: 2
  givenname: Detlef-M.
  surname: Smilgies
  fullname: Smilgies, Detlef-M.
  organization: Cornell High Energy Synchrotron Source (CHESS), Cornell University
– sequence: 3
  givenname: William A.
  orcidid: 0000-0002-6615-5342
  surname: Tisdale
  fullname: Tisdale, William A.
  email: tisdale@mit.edu
  organization: Department of Chemical Engineering, Massachusetts Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26998914$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1371222$$D View this record in Osti.gov
BookMark eNqF0c2K1TAUB_AgI86Hgk8gQTfjomNOmvY2y2FwVBxwo-AupOmJk0ubXnPSRd_GZ_HJ7KX3qgyCq4TwO8k5-Z-zkzhGZOw5iCsQZfMmDjarWohH7AzUpi5UXYuTwx5AylN2TrQVQkJV1U_Yqay1bjSoM7b9GCLm4IiPnud75IS9LywRDm0_7w-jjaNLM2Xbc5p2mHqblwIkPqClKWHH25kntH2Rw4A8RE4hT_xrkez88we5hWMK8dtT9tjbnvDZYb1gX27ffr55X9x9evfh5vqucJWCXJTgodSqldqrCpyTyrWd76Atse60d64Sne461VpRObDSexBtLaQqZd14r8sL9nK9d6QcDLmQ0d27MUZ02UC5Wf5DLuhyRbs0fp-QshkCOex7G3GcyEAjq0pCLZr_043WEhQ0m4W-ekC345TiMu2qZCNh__aLg5raATuzS2GwaTbHVBZwtQKXRqKE3ixD2BzGmJMNvQFh9rGbY-x_WvxdcLzzH_T1Smm3DwXTXy0-tL8A14670A
CitedBy_id crossref_primary_10_1021_jacs_2c11120
crossref_primary_10_1063_5_0030529
crossref_primary_10_1021_acs_nanolett_8b01860
crossref_primary_10_1021_acs_nanolett_4c02636
crossref_primary_10_1038_s41598_023_27558_8
crossref_primary_10_1021_acsami_8b06044
crossref_primary_10_1021_jacs_9b06010
crossref_primary_10_1038_s41467_024_46230_x
crossref_primary_10_1002_adom_202401252
crossref_primary_10_3390_ma12223771
crossref_primary_10_1002_ange_201916402
crossref_primary_10_1021_jacs_0c01809
crossref_primary_10_1007_s10853_021_06292_4
crossref_primary_10_1021_acs_jpclett_1c00254
crossref_primary_10_1021_acs_nanolett_0c02013
crossref_primary_10_1038_s41467_021_22947_x
crossref_primary_10_1002_smll_201900438
crossref_primary_10_1021_acsnano_0c00076
crossref_primary_10_1007_s40843_019_1219_y
crossref_primary_10_1021_acs_nanolett_1c00860
crossref_primary_10_1038_s41467_018_04801_9
crossref_primary_10_1016_j_cossms_2018_12_002
crossref_primary_10_1021_acsomega_7b01791
crossref_primary_10_1038_s41586_018_0512_5
crossref_primary_10_1039_D0SM00838A
crossref_primary_10_1039_C8NR04606A
crossref_primary_10_1021_acs_nanolett_7b00584
crossref_primary_10_1038_nature23308
crossref_primary_10_1002_adma_201800082
crossref_primary_10_1021_acs_jpcc_8b06996
crossref_primary_10_1002_ppsc_202100087
crossref_primary_10_1002_ppsc_201900323
crossref_primary_10_1016_j_jcis_2018_03_034
crossref_primary_10_1002_anie_201803552
crossref_primary_10_1002_adma_201802265
crossref_primary_10_1021_acsnano_9b07820
crossref_primary_10_1039_C7NR02194A
crossref_primary_10_1557_s43580_024_00859_4
crossref_primary_10_1038_s44160_023_00407_2
crossref_primary_10_1002_admi_201600431
crossref_primary_10_1017_S1431927621008023
crossref_primary_10_1021_acs_nanolett_9b01142
crossref_primary_10_1021_acsaelm_1c01011
crossref_primary_10_1021_acs_chemmater_0c04151
crossref_primary_10_1021_acsnano_0c03800
crossref_primary_10_3390_nano10112240
crossref_primary_10_1021_acs_nanolett_7b01323
crossref_primary_10_1021_acs_chemmater_1c02910
crossref_primary_10_1021_acs_jpcc_2c07484
crossref_primary_10_1021_acsnano_2c06167
crossref_primary_10_1021_jacs_3c14603
crossref_primary_10_1002_ange_202104812
crossref_primary_10_1002_adom_202302062
crossref_primary_10_1016_j_nanoen_2020_105254
crossref_primary_10_1038_s41467_023_38216_y
crossref_primary_10_1002_adfm_201807658
crossref_primary_10_1038_s42004_020_0275_4
crossref_primary_10_1021_acsnano_8b07880
crossref_primary_10_1039_D0MA00072H
crossref_primary_10_3390_cryst15010063
crossref_primary_10_1021_acs_nanolett_1c00890
crossref_primary_10_1007_s12274_021_4022_7
crossref_primary_10_1021_acsami_1c19193
crossref_primary_10_1002_advs_202307396
crossref_primary_10_1002_anie_202104812
crossref_primary_10_1126_science_aaz8541
crossref_primary_10_1021_acs_langmuir_1c02804
crossref_primary_10_1021_acs_chemmater_7b04223
crossref_primary_10_1039_C7TA06060B
crossref_primary_10_1002_advs_202408416
crossref_primary_10_1038_s41467_018_06734_9
crossref_primary_10_1126_sciadv_aaw5623
crossref_primary_10_1007_s11051_019_4512_7
crossref_primary_10_1039_D0NH00008F
crossref_primary_10_1557_mrs_2020_229
crossref_primary_10_1002_smll_202106880
crossref_primary_10_1038_s41598_017_02121_4
crossref_primary_10_1021_acsnano_8b01643
crossref_primary_10_1002_smll_202106768
crossref_primary_10_1021_acs_accounts_0c00739
crossref_primary_10_1002_admi_202201039
crossref_primary_10_1021_acs_jpclett_9b00869
crossref_primary_10_1021_acs_jpcc_2c03348
crossref_primary_10_1021_acs_langmuir_0c00524
crossref_primary_10_1063_1_5085231
crossref_primary_10_1021_acs_chemmater_9b03268
crossref_primary_10_1038_s43586_024_00293_8
crossref_primary_10_1016_j_mtphys_2024_101431
crossref_primary_10_1021_acs_chemmater_9b01767
crossref_primary_10_1021_acs_nanolett_6b02586
crossref_primary_10_1002_adma_201703316
crossref_primary_10_1021_acs_nanolett_7b01237
crossref_primary_10_1021_acs_nanolett_3c00299
crossref_primary_10_1002_adma_202210749
crossref_primary_10_1021_acs_chemrev_2c00700
crossref_primary_10_3390_bios14080393
crossref_primary_10_1063_5_0072017
crossref_primary_10_1021_acs_jpclett_3c02614
crossref_primary_10_1039_D0NR08312G
crossref_primary_10_1039_D4SC05188B
crossref_primary_10_1039_D4SM01265H
crossref_primary_10_1002_adma_202002254
crossref_primary_10_3390_nano10112207
crossref_primary_10_1021_acsomega_2c04785
crossref_primary_10_1039_C9CP04658E
crossref_primary_10_1002_smll_201801083
crossref_primary_10_3390_ma12213464
crossref_primary_10_1021_acs_jpcc_4c06965
crossref_primary_10_1038_s41467_020_19461_x
crossref_primary_10_1016_j_cej_2023_148260
crossref_primary_10_1038_s41467_018_06395_8
crossref_primary_10_1021_acs_jpclett_9b01282
crossref_primary_10_1021_acs_jpcc_7b10778
crossref_primary_10_1021_acs_jpcc_0c02853
crossref_primary_10_1021_acs_jpclett_9b02373
crossref_primary_10_1039_C8NR01163J
crossref_primary_10_1021_acs_chemmater_8b02178
crossref_primary_10_1021_acs_jpclett_9b01841
crossref_primary_10_1002_ange_201803552
crossref_primary_10_1021_acs_nanolett_0c01579
crossref_primary_10_1039_D3CC03292B
crossref_primary_10_1021_acsnano_9b03052
crossref_primary_10_1021_acs_jpcc_1c07430
crossref_primary_10_26599_NR_2025_94907183
crossref_primary_10_1021_acsnano_3c12186
crossref_primary_10_1038_s41467_021_24614_7
crossref_primary_10_1021_acs_macromol_2c01984
crossref_primary_10_1021_acsnano_5c01223
crossref_primary_10_1002_smll_201702575
crossref_primary_10_1021_jacs_3c05299
crossref_primary_10_1002_adom_202402740
crossref_primary_10_1016_j_matt_2022_09_027
crossref_primary_10_1021_acs_cgd_3c00022
crossref_primary_10_1021_acs_jpcc_1c02430
crossref_primary_10_1038_nmat4746
crossref_primary_10_1021_acs_jpclett_7b03187
crossref_primary_10_1038_s41928_021_00632_7
crossref_primary_10_1038_s41467_019_12305_3
crossref_primary_10_1021_acsnano_9b05914
crossref_primary_10_1021_acsnano_3c03466
crossref_primary_10_1021_jacs_7b06908
crossref_primary_10_1126_sciadv_aaw2399
crossref_primary_10_1021_acs_nanolett_8b00809
crossref_primary_10_1002_adma_201802078
crossref_primary_10_1021_jacs_9b06889
crossref_primary_10_1021_acs_chemmater_2c03153
crossref_primary_10_1021_acsenergylett_0c01453
crossref_primary_10_1039_C9NR05908C
crossref_primary_10_1021_acsnano_4c04076
crossref_primary_10_1021_acs_chemmater_9b01686
crossref_primary_10_1016_j_jcis_2020_04_054
crossref_primary_10_1016_j_jcis_2023_01_004
crossref_primary_10_1021_acs_jpclett_7b03278
crossref_primary_10_1021_acsnano_4c08439
crossref_primary_10_1021_acs_nanolett_4c00875
crossref_primary_10_1021_acs_jpcc_8b11518
crossref_primary_10_1021_acs_cgd_9b01523
crossref_primary_10_1021_acsnano_1c11130
crossref_primary_10_1021_acs_jpcc_8b08413
crossref_primary_10_1021_acs_nanolett_6b04201
crossref_primary_10_1002_adfm_202000594
crossref_primary_10_1002_adma_202304069
crossref_primary_10_1016_j_cossms_2024_101159
crossref_primary_10_1021_acsnano_9b04951
crossref_primary_10_1002_admi_201900031
crossref_primary_10_3390_cryst7070207
crossref_primary_10_1021_acs_jpcb_2c07937
crossref_primary_10_1021_acs_chemmater_7b04322
crossref_primary_10_1002_smll_201906146
crossref_primary_10_1021_acs_cgd_1c01084
crossref_primary_10_1209_0295_5075_119_28003
crossref_primary_10_1038_s41467_020_16560_7
crossref_primary_10_1039_D3FD00109A
crossref_primary_10_1021_acsnano_9b00006
crossref_primary_10_1002_adma_202200185
crossref_primary_10_1038_s41565_024_01831_x
crossref_primary_10_1039_D4SM00795F
crossref_primary_10_1021_acs_chemmater_3c01636
crossref_primary_10_1021_acs_langmuir_6b03570
crossref_primary_10_1038_s41563_019_0485_2
crossref_primary_10_1021_acs_chemmater_0c00984
crossref_primary_10_1021_acs_jpclett_7b01595
crossref_primary_10_1021_acs_jpcb_9b08310
crossref_primary_10_1039_D0NH00526F
crossref_primary_10_1021_acsami_0c18851
crossref_primary_10_1021_acs_langmuir_9b01290
crossref_primary_10_1038_nmat4773
crossref_primary_10_1002_smll_202311714
crossref_primary_10_1021_acs_jpcc_0c02805
crossref_primary_10_1007_s12274_019_2483_8
crossref_primary_10_1038_ncomms15257
crossref_primary_10_1021_acsnano_8b06706
crossref_primary_10_1021_acs_jpclett_9b02622
crossref_primary_10_1021_acsnano_2c02014
crossref_primary_10_1021_acs_nanolett_8b04817
crossref_primary_10_1021_acsomega_7b02031
crossref_primary_10_1021_jacs_3c01286
crossref_primary_10_1021_jacs_0c12087
crossref_primary_10_1039_D0CS00541J
crossref_primary_10_1186_s11671_021_03635_7
crossref_primary_10_1246_bcsj_20180310
crossref_primary_10_1080_02678292_2016_1225834
crossref_primary_10_1021_acsami_6b06989
crossref_primary_10_1021_acs_nanolett_7b03123
crossref_primary_10_1039_C6CC07878H
crossref_primary_10_1021_acs_langmuir_6b04319
crossref_primary_10_1039_D2NH00548D
crossref_primary_10_1063_1_5082685
crossref_primary_10_1021_acsnano_0c00668
crossref_primary_10_1021_jacs_8b10752
crossref_primary_10_1038_s41563_022_01438_4
crossref_primary_10_1002_anie_201916402
crossref_primary_10_1021_jacs_9b01033
crossref_primary_10_1039_D0TA06704K
crossref_primary_10_1021_acs_chemrev_6b00196
crossref_primary_10_1038_s41467_017_00844_6
crossref_primary_10_1002_rpm_20240009
crossref_primary_10_1002_adma_201707077
crossref_primary_10_1021_acs_macromol_8b02273
crossref_primary_10_1021_jacs_2c12993
crossref_primary_10_1021_acs_jpcc_4c03174
crossref_primary_10_1002_smll_201904954
crossref_primary_10_1021_acs_chemmater_1c02962
crossref_primary_10_1103_PhysRevLett_124_060201
crossref_primary_10_1063_1_5108904
crossref_primary_10_1039_D1NR05436H
crossref_primary_10_1021_acsnano_3c10201
crossref_primary_10_1021_acs_chemmater_1c02159
crossref_primary_10_1021_acs_chemmater_8b02691
crossref_primary_10_1063_5_0031692
crossref_primary_10_1039_C9LC00192A
crossref_primary_10_1021_acsanm_8b00473
Cites_doi 10.1107/S0021889806012337
10.1021/nn103303q
10.1038/nnano.2012.63
10.1126/science.1142593
10.1021/ja408250q
10.1038/nature09188
10.1126/science.270.5240.1335
10.1116/1.4705402
10.1021/nn203837m
10.1063/1.3689973
10.1002/jcc.23152
10.1021/cm503626s
10.1038/nature04414
10.1126/science.271.5251.933
10.1021/nl803174p
10.1038/179119a0
10.1002/adma.201404636
10.1038/nnano.2012.127
10.1021/cr900137k
10.1021/ja110454b
10.1021/nl302324b
10.1063/1.882495
10.1021/nn5018654
10.1021/ja103083q
10.1103/PhysRevB.59.14191
10.1126/science.1252727
10.1107/S0021889807023382
10.1038/204990a0
10.1021/ja8085438
10.1038/ncomms7912
10.1038/nmat3984
10.1021/ja400948t
10.1021/nn506223h
10.1021/acs.jpclett.5b00946
ContentType Journal Article
Copyright Springer Nature Limited 2016
Copyright Nature Publishing Group Jul 2016
Copyright_xml – notice: Springer Nature Limited 2016
– notice: Copyright Nature Publishing Group Jul 2016
CorporateAuthor Energy Frontier Research Centers (EFRC) (United States). Center for Excitonics (CE)
CorporateAuthor_xml – name: Energy Frontier Research Centers (EFRC) (United States). Center for Excitonics (CE)
DBID AAYXX
CITATION
NPM
3V.
7SR
7X7
7XB
88E
88I
8AO
8BQ
8FD
8FE
8FG
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JG9
K9.
KB.
L6V
M0S
M1P
M2P
M7S
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
7U5
L7M
OTOTI
DOI 10.1038/nmat4600
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Engineered Materials Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Engineered Materials Abstracts
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
Materials Science Database
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
METADEX
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList MEDLINE - Academic
PubMed
Materials Research Database
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1476-4660
EndPage 781
ExternalDocumentID 1371222
4099171231
26998914
10_1038_nmat4600
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
0R~
29M
39C
3V.
4.4
5BI
70F
7X7
88E
88I
8AO
8FE
8FG
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFS
ACGOD
ACIWK
ACUHS
ADBBV
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BKKNO
BPHCQ
BVXVI
CCPQU
CZ9
D1I
DB5
DU5
DWQXO
EBS
EE.
EJD
EMOBN
ESN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
KC.
L6V
M1P
M2P
M7S
MK~
NNMJJ
O9-
ODYON
P2P
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RIG
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ACSTC
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
ABFSG
AEZWR
AFHIU
AHWEU
AIXLP
NFIDA
NPM
PJZUB
PPXIY
PQGLB
7SR
7XB
8BQ
8FD
8FK
JG9
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
7U5
L7M
AADEA
AADWK
AAEXX
AAJMP
AAPBV
AAYJO
ABEEJ
ABGIJ
ABPTK
ABVXF
ACBMV
ACBRV
ACBYP
ACIGE
ACTTH
ACVWB
ADMDM
ADQMX
ADZGE
AEDAW
AEFTE
AGEZK
AGGBP
AHGBK
AJDOV
NYICJ
OTOTI
ID FETCH-LOGICAL-c541t-31f1394b29f451cc24cbdfd1b3e6d9fcc50d9dd4ba05c1a2ff10b60243268ff93
IEDL.DBID 7X7
ISSN 1476-1122
1476-4660
IngestDate Fri May 19 00:38:36 EDT 2023
Fri Jul 11 03:02:33 EDT 2025
Fri Jul 11 10:17:14 EDT 2025
Sat Aug 23 14:57:35 EDT 2025
Mon Jul 21 06:01:49 EDT 2025
Tue Jul 01 02:13:57 EDT 2025
Thu Apr 24 23:02:00 EDT 2025
Fri Feb 21 02:40:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-31f1394b29f451cc24cbdfd1b3e6d9fcc50d9dd4ba05c1a2ff10b60243268ff93
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
SC0001088
ORCID 0000-0002-6615-5342
0000000266155342
PMID 26998914
PQID 1799228212
PQPubID 27576
PageCount 7
ParticipantIDs osti_scitechconnect_1371222
proquest_miscellaneous_1825521608
proquest_miscellaneous_1799214187
proquest_journals_1799228212
pubmed_primary_26998914
crossref_citationtrail_10_1038_nmat4600
crossref_primary_10_1038_nmat4600
springer_journals_10_1038_nmat4600
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-07-01
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationTitle Nature materials
PublicationTitleAbbrev Nature Mater
PublicationTitleAlternate Nat Mater
PublicationYear 2016
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Quan (CR15) 2012; 12
Shevchenko, Talapin, Kotov, O’Brien, Murray (CR6) 2006; 439
Williams, Smith (CR1) 1957; 179
Sun (CR20) 2012; 7
Murray, Kagan, Bawendi (CR5) 1995; 270
Bodnarchuk, Kovalenko, Heiss, Talapin (CR8) 2010; 132
Korgel, Fitzmaurice (CR9) 1999; 59
Alivisatos (CR3) 1996; 271
Weidman, Beck, Hoffman, Prins, Tisdale (CR22) 2014; 8
Dong, Chen, Vora, Kikkawa, Murray (CR11) 2010; 466
Jones, Segnit, Sanders (CR2) 1964; 204
Kaushik, Clancy (CR32) 2013; 34
Chuang, Brown, Bulović, Bawendi (CR19) 2014; 13
Hanrath (CR13) 2012; 30
Bain (CR29) 1924; 70
Lu, Yager, Zhang, Xin, Gang (CR17) 2015; 6
Busch, Rauscher, Smilgies, Posselt, Papadakis (CR35) 2006; 39
Bian (CR27) 2011; 5
Talapin, Lee, Kovalenko, Shevchenko (CR12) 2010; 110
Choi, Ko, Kim, Jeong (CR23) 2013; 135
Robinson (CR10) 2007; 317
Park (CR14) 2012; 6
Kovalenko (CR4) 2015; 9
Quan (CR16) 2014; 136
Crossland (CR30) 2009; 9
Weidman, Yager, Tisdale (CR26) 2015; 27
Ip (CR18) 2012; 7
Goodfellow, Yu, Bosoy, Smilgies, Korgel (CR28) 2015; 6
Gast, Russel (CR33) 1998; 51
Zherebetskyy (CR25) 2014; 344
Choi (CR24) 2011; 133
Smith, Goodfellow, Smilgies, Korgel (CR7) 2009; 131
Supran (CR21) 2015; 27
Smilgies, Blasini (CR34) 2007; 40
Kaushik, Clancy (CR31) 2012; 136
T Hanrath (BFnmat4600_CR13) 2012; 30
L Sun (BFnmat4600_CR20) 2012; 7
EJW Crossland (BFnmat4600_CR30) 2009; 9
CM Chuang (BFnmat4600_CR19) 2014; 13
K Bian (BFnmat4600_CR27) 2011; 5
GJ Supran (BFnmat4600_CR21) 2015; 27
AP Kaushik (BFnmat4600_CR31) 2012; 136
BW Goodfellow (BFnmat4600_CR28) 2015; 6
DK Smith (BFnmat4600_CR7) 2009; 131
J Park (BFnmat4600_CR14) 2012; 6
Z Quan (BFnmat4600_CR16) 2014; 136
A Dong (BFnmat4600_CR11) 2010; 466
AP Kaushik (BFnmat4600_CR32) 2013; 34
RC Williams (BFnmat4600_CR1) 1957; 179
EC Bain (BFnmat4600_CR29) 1924; 70
AP Alivisatos (BFnmat4600_CR3) 1996; 271
JJ Choi (BFnmat4600_CR24) 2011; 133
EV Shevchenko (BFnmat4600_CR6) 2006; 439
BA Korgel (BFnmat4600_CR9) 1999; 59
RD Robinson (BFnmat4600_CR10) 2007; 317
MV Kovalenko (BFnmat4600_CR4) 2015; 9
MC Weidman (BFnmat4600_CR26) 2015; 27
DV Talapin (BFnmat4600_CR12) 2010; 110
F Lu (BFnmat4600_CR17) 2015; 6
MC Weidman (BFnmat4600_CR22) 2014; 8
Z Quan (BFnmat4600_CR15) 2012; 12
JB Jones (BFnmat4600_CR2) 1964; 204
CB Murray (BFnmat4600_CR5) 1995; 270
AH Ip (BFnmat4600_CR18) 2012; 7
H Choi (BFnmat4600_CR23) 2013; 135
P Busch (BFnmat4600_CR35) 2006; 39
MI Bodnarchuk (BFnmat4600_CR8) 2010; 132
D-M Smilgies (BFnmat4600_CR34) 2007; 40
AP Gast (BFnmat4600_CR33) 1998; 51
D Zherebetskyy (BFnmat4600_CR25) 2014; 344
25903309 - Nat Commun. 2015 Apr 23;6:6912
25639896 - Adv Mater. 2015 Feb 25;27(8):1437-42
23496143 - J Am Chem Soc. 2013 Apr 10;135(14):5278-81
22562037 - Nat Nanotechnol. 2012 May 06;7(6):369-73
21344877 - ACS Nano. 2011 Apr 26;5(4):2815-23
20701285 - J Am Chem Soc. 2010 Sep 1;132(34):11967-77
16397494 - Nature. 2006 Jan 5;439(7072):55-9
25608730 - ACS Nano. 2015 Feb 24;9(2):1012-57
19216526 - J Am Chem Soc. 2009 Mar 11;131(9):3281-90
22842552 - Nat Nanotechnol. 2012 Sep;7(9):577-82
24840645 - ACS Nano. 2014 Jun 24;8(6):6363-71
24397381 - J Am Chem Soc. 2014 Jan 29;136(4):1352-9
24859641 - Nat Mater. 2014 Aug;13(8):796-801
17641197 - Science. 2007 Jul 20;317(5836):355-8
22443785 - J Chem Phys. 2012 Mar 21;136(11):114702
23109263 - J Comput Chem. 2013 Mar 15;34(7):523-32
24876347 - Science. 2014 Jun 20;344(6190):1380-4
22813064 - Nano Lett. 2012 Aug 8;12(8):4409-13
20651688 - Nature. 2010 Jul 22;466(7305):474-7
19958036 - Chem Rev. 2010 Jan;110(1):389-458
22360715 - ACS Nano. 2012 Mar 27;6(3):2078-85
26266710 - J Phys Chem Lett. 2015 Jul 2;6(13):2406-12
13400114 - Nature. 1957 Jan 19;179(4551):119-20
21306161 - J Am Chem Soc. 2011 Mar 9;133(9):3131-8
19007289 - Nano Lett. 2009 Aug;9(8):2807-12
References_xml – volume: 39
  start-page: 433
  year: 2006
  end-page: 442
  ident: CR35
  article-title: Grazing-incidence small-angle X-ray scattering from thin polymer films with lamellar structures - the scattering cross section in the distorted-wave Born approximation
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889806012337
– volume: 5
  start-page: 2815
  year: 2011
  end-page: 2823
  ident: CR27
  article-title: Shape-anisotropy driven symmetry transformations in nanocrystal superlattice polymorphs
  publication-title: ACS Nano
  doi: 10.1021/nn103303q
– volume: 7
  start-page: 369
  year: 2012
  end-page: 373
  ident: CR20
  article-title: Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control
  publication-title: Nature Nanotech.
  doi: 10.1038/nnano.2012.63
– volume: 317
  start-page: 355
  year: 2007
  end-page: 358
  ident: CR10
  article-title: Spontaneous superlattice formation in nanorods through partial cation exchange
  publication-title: Science
  doi: 10.1126/science.1142593
– volume: 136
  start-page: 1352
  year: 2014
  end-page: 1359
  ident: CR16
  article-title: Solvent-mediated self-assembly of nanocube superlattices
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja408250q
– volume: 70
  start-page: 25
  year: 1924
  end-page: 46
  ident: CR29
  article-title: The nature of martensite
  publication-title: Trans. Am. Inst. Min. Metall. Eng.
– volume: 466
  start-page: 474
  year: 2010
  end-page: 477
  ident: CR11
  article-title: Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface
  publication-title: Nature
  doi: 10.1038/nature09188
– volume: 270
  start-page: 1335
  year: 1995
  end-page: 1338
  ident: CR5
  article-title: Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices
  publication-title: Science
  doi: 10.1126/science.270.5240.1335
– volume: 30
  start-page: 030802
  year: 2012
  ident: CR13
  article-title: Colloidal nanocrystal quantum dot assemblies as artificial solids
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.4705402
– volume: 6
  start-page: 2078
  year: 2012
  end-page: 2085
  ident: CR14
  article-title: Direct observation of nanoparticle superlattice formation by using liquid cell transmission electron microscopy
  publication-title: ACS Nano
  doi: 10.1021/nn203837m
– volume: 136
  start-page: 114702
  year: 2012
  ident: CR31
  article-title: Explicit all-atom modeling of realistically sized ligand-capped nanocrystals
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3689973
– volume: 34
  start-page: 523
  year: 2013
  end-page: 532
  ident: CR32
  article-title: Solvent-driven symmetry of self-assembled nanocrystal superlattices—a computational study
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.23152
– volume: 27
  start-page: 474
  year: 2015
  end-page: 482
  ident: CR26
  article-title: Interparticle spacing and structural ordering in superlattice PbS nanocrystal solids undergoing ligand exchange
  publication-title: Chem. Mater.
  doi: 10.1021/cm503626s
– volume: 439
  start-page: 55
  year: 2006
  end-page: 59
  ident: CR6
  article-title: Structural diversity in binary nanoparticle superlattices
  publication-title: Nature
  doi: 10.1038/nature04414
– volume: 271
  start-page: 933
  year: 1996
  end-page: 937
  ident: CR3
  article-title: Semiconductor clusters, nanocrystals, and quantum dots
  publication-title: Science
  doi: 10.1126/science.271.5251.933
– volume: 9
  start-page: 2807
  year: 2009
  end-page: 2812
  ident: CR30
  article-title: A bicontinuous double gyroid hybrid solar cell
  publication-title: Nano Lett.
  doi: 10.1021/nl803174p
– volume: 179
  start-page: 119
  year: 1957
  end-page: 120
  ident: CR1
  article-title: Crystallizable insect virus
  publication-title: Nature
  doi: 10.1038/179119a0
– volume: 27
  start-page: 1437
  year: 2015
  end-page: 1442
  ident: CR21
  article-title: High-performance shortwave-infrared light-emitting devices using core-shell (PbS-CdS) colloidal quantum dots
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404636
– volume: 7
  start-page: 577
  year: 2012
  end-page: 582
  ident: CR18
  article-title: Hybrid passivated colloidal quantum dot solids
  publication-title: Nature Nanotech.
  doi: 10.1038/nnano.2012.127
– volume: 110
  start-page: 389
  year: 2010
  end-page: 458
  ident: CR12
  article-title: Prospects of colloidal nanocrystals for electronic and optoelectronic applications
  publication-title: Chem. Rev.
  doi: 10.1021/cr900137k
– volume: 133
  start-page: 3131
  year: 2011
  end-page: 3138
  ident: CR24
  article-title: Controlling nanocrystal superlattice symmetry and shape-anisotropic interactions through variable ligand surface coverage
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja110454b
– volume: 12
  start-page: 4409
  year: 2012
  end-page: 4413
  ident: CR15
  article-title: Tilted face-centered-cubic supercrystals of PbS nanocubes
  publication-title: Nano Lett.
  doi: 10.1021/nl302324b
– volume: 51
  start-page: 24
  year: 1998
  end-page: 30
  ident: CR33
  article-title: Simple ordering in complex fluids
  publication-title: Phys. Today
  doi: 10.1063/1.882495
– volume: 8
  start-page: 6363
  year: 2014
  end-page: 6371
  ident: CR22
  article-title: Monodisperse, air-stable PbS nanocrystals via precursor stoichiometry control
  publication-title: ACS Nano
  doi: 10.1021/nn5018654
– volume: 132
  start-page: 11967
  year: 2010
  end-page: 11977
  ident: CR8
  article-title: Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: temperature as the structure-directing factor
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja103083q
– volume: 59
  start-page: 14191
  year: 1999
  end-page: 14201
  ident: CR9
  article-title: Small-angle X-ray-scattering study of silver-nanocrystal disorder-order phase transitions
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.14191
– volume: 344
  start-page: 1380
  year: 2014
  end-page: 1384
  ident: CR25
  article-title: Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid
  publication-title: Science
  doi: 10.1126/science.1252727
– volume: 40
  start-page: 716
  year: 2007
  end-page: 718
  ident: CR34
  article-title: Indexation scheme for oriented molecular thin films studied with grazing-incidence reciprocal-space mapping
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889807023382
– volume: 204
  start-page: 990
  year: 1964
  end-page: 991
  ident: CR2
  article-title: Structure of opal
  publication-title: Nature
  doi: 10.1038/204990a0
– volume: 131
  start-page: 3281
  year: 2009
  end-page: 3290
  ident: CR7
  article-title: Self-assembled simple hexagonal AB2 binary nanocrystal superlattices: SEM, GISAXS, and defects
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8085438
– volume: 6
  start-page: 6912
  year: 2015
  ident: CR17
  article-title: Superlattices assembled through shape-induced directional binding
  publication-title: Nature Commun.
  doi: 10.1038/ncomms7912
– volume: 13
  start-page: 796
  year: 2014
  end-page: 801
  ident: CR19
  article-title: Improved performance and stability in quantum dot solar cells through band alignment engineering
  publication-title: Nature Mater.
  doi: 10.1038/nmat3984
– volume: 135
  start-page: 5278
  year: 2013
  end-page: 5281
  ident: CR23
  article-title: Steric-hindrance-driven shape transition in PbS quantum dots: understanding size-dependent stability
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja400948t
– volume: 9
  start-page: 1012
  year: 2015
  end-page: 1057
  ident: CR4
  article-title: Prospects of nanoscience with nanocrystals
  publication-title: ACS Nano
  doi: 10.1021/nn506223h
– volume: 6
  start-page: 2406
  year: 2015
  end-page: 2412
  ident: CR28
  article-title: The role of ligand packing frustration in body-centered cubic (bcc) superlattices of colloidal nanocrystals
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b00946
– volume: 466
  start-page: 474
  year: 2010
  ident: BFnmat4600_CR11
  publication-title: Nature
  doi: 10.1038/nature09188
– volume: 271
  start-page: 933
  year: 1996
  ident: BFnmat4600_CR3
  publication-title: Science
  doi: 10.1126/science.271.5251.933
– volume: 5
  start-page: 2815
  year: 2011
  ident: BFnmat4600_CR27
  publication-title: ACS Nano
  doi: 10.1021/nn103303q
– volume: 136
  start-page: 114702
  year: 2012
  ident: BFnmat4600_CR31
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3689973
– volume: 136
  start-page: 1352
  year: 2014
  ident: BFnmat4600_CR16
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja408250q
– volume: 27
  start-page: 474
  year: 2015
  ident: BFnmat4600_CR26
  publication-title: Chem. Mater.
  doi: 10.1021/cm503626s
– volume: 317
  start-page: 355
  year: 2007
  ident: BFnmat4600_CR10
  publication-title: Science
  doi: 10.1126/science.1142593
– volume: 6
  start-page: 2406
  year: 2015
  ident: BFnmat4600_CR28
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b00946
– volume: 6
  start-page: 6912
  year: 2015
  ident: BFnmat4600_CR17
  publication-title: Nature Commun.
  doi: 10.1038/ncomms7912
– volume: 27
  start-page: 1437
  year: 2015
  ident: BFnmat4600_CR21
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404636
– volume: 344
  start-page: 1380
  year: 2014
  ident: BFnmat4600_CR25
  publication-title: Science
  doi: 10.1126/science.1252727
– volume: 7
  start-page: 369
  year: 2012
  ident: BFnmat4600_CR20
  publication-title: Nature Nanotech.
  doi: 10.1038/nnano.2012.63
– volume: 8
  start-page: 6363
  year: 2014
  ident: BFnmat4600_CR22
  publication-title: ACS Nano
  doi: 10.1021/nn5018654
– volume: 9
  start-page: 2807
  year: 2009
  ident: BFnmat4600_CR30
  publication-title: Nano Lett.
  doi: 10.1021/nl803174p
– volume: 9
  start-page: 1012
  year: 2015
  ident: BFnmat4600_CR4
  publication-title: ACS Nano
  doi: 10.1021/nn506223h
– volume: 12
  start-page: 4409
  year: 2012
  ident: BFnmat4600_CR15
  publication-title: Nano Lett.
  doi: 10.1021/nl302324b
– volume: 179
  start-page: 119
  year: 1957
  ident: BFnmat4600_CR1
  publication-title: Nature
  doi: 10.1038/179119a0
– volume: 131
  start-page: 3281
  year: 2009
  ident: BFnmat4600_CR7
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8085438
– volume: 133
  start-page: 3131
  year: 2011
  ident: BFnmat4600_CR24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja110454b
– volume: 34
  start-page: 523
  year: 2013
  ident: BFnmat4600_CR32
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.23152
– volume: 70
  start-page: 25
  year: 1924
  ident: BFnmat4600_CR29
  publication-title: Trans. Am. Inst. Min. Metall. Eng.
– volume: 135
  start-page: 5278
  year: 2013
  ident: BFnmat4600_CR23
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja400948t
– volume: 51
  start-page: 24
  year: 1998
  ident: BFnmat4600_CR33
  publication-title: Phys. Today
  doi: 10.1063/1.882495
– volume: 30
  start-page: 030802
  year: 2012
  ident: BFnmat4600_CR13
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.4705402
– volume: 39
  start-page: 433
  year: 2006
  ident: BFnmat4600_CR35
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889806012337
– volume: 59
  start-page: 14191
  year: 1999
  ident: BFnmat4600_CR9
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.14191
– volume: 40
  start-page: 716
  year: 2007
  ident: BFnmat4600_CR34
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889807023382
– volume: 132
  start-page: 11967
  year: 2010
  ident: BFnmat4600_CR8
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja103083q
– volume: 110
  start-page: 389
  year: 2010
  ident: BFnmat4600_CR12
  publication-title: Chem. Rev.
  doi: 10.1021/cr900137k
– volume: 13
  start-page: 796
  year: 2014
  ident: BFnmat4600_CR19
  publication-title: Nature Mater.
  doi: 10.1038/nmat3984
– volume: 439
  start-page: 55
  year: 2006
  ident: BFnmat4600_CR6
  publication-title: Nature
  doi: 10.1038/nature04414
– volume: 204
  start-page: 990
  year: 1964
  ident: BFnmat4600_CR2
  publication-title: Nature
  doi: 10.1038/204990a0
– volume: 270
  start-page: 1335
  year: 1995
  ident: BFnmat4600_CR5
  publication-title: Science
  doi: 10.1126/science.270.5240.1335
– volume: 6
  start-page: 2078
  year: 2012
  ident: BFnmat4600_CR14
  publication-title: ACS Nano
  doi: 10.1021/nn203837m
– volume: 7
  start-page: 577
  year: 2012
  ident: BFnmat4600_CR18
  publication-title: Nature Nanotech.
  doi: 10.1038/nnano.2012.127
– reference: 22562037 - Nat Nanotechnol. 2012 May 06;7(6):369-73
– reference: 22360715 - ACS Nano. 2012 Mar 27;6(3):2078-85
– reference: 22813064 - Nano Lett. 2012 Aug 8;12(8):4409-13
– reference: 17641197 - Science. 2007 Jul 20;317(5836):355-8
– reference: 23496143 - J Am Chem Soc. 2013 Apr 10;135(14):5278-81
– reference: 22842552 - Nat Nanotechnol. 2012 Sep;7(9):577-82
– reference: 19216526 - J Am Chem Soc. 2009 Mar 11;131(9):3281-90
– reference: 24859641 - Nat Mater. 2014 Aug;13(8):796-801
– reference: 24876347 - Science. 2014 Jun 20;344(6190):1380-4
– reference: 20701285 - J Am Chem Soc. 2010 Sep 1;132(34):11967-77
– reference: 25639896 - Adv Mater. 2015 Feb 25;27(8):1437-42
– reference: 16397494 - Nature. 2006 Jan 5;439(7072):55-9
– reference: 26266710 - J Phys Chem Lett. 2015 Jul 2;6(13):2406-12
– reference: 21306161 - J Am Chem Soc. 2011 Mar 9;133(9):3131-8
– reference: 25608730 - ACS Nano. 2015 Feb 24;9(2):1012-57
– reference: 21344877 - ACS Nano. 2011 Apr 26;5(4):2815-23
– reference: 19958036 - Chem Rev. 2010 Jan;110(1):389-458
– reference: 13400114 - Nature. 1957 Jan 19;179(4551):119-20
– reference: 20651688 - Nature. 2010 Jul 22;466(7305):474-7
– reference: 23109263 - J Comput Chem. 2013 Mar 15;34(7):523-32
– reference: 22443785 - J Chem Phys. 2012 Mar 21;136(11):114702
– reference: 24840645 - ACS Nano. 2014 Jun 24;8(6):6363-71
– reference: 25903309 - Nat Commun. 2015 Apr 23;6:6912
– reference: 24397381 - J Am Chem Soc. 2014 Jan 29;136(4):1352-9
– reference: 19007289 - Nano Lett. 2009 Aug;9(8):2807-12
SSID ssj0021556
Score 2.5995111
Snippet On solvent evaporation, non-interacting monodisperse colloidal particles self-assemble into a close-packed superlattice. Although the initial and final states...
On solvent evaporation, non-interacting monodisperse colloidal particles self-assemble into a close-packed superlattice. Although the initial and nal states...
SourceID osti
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 775
SubjectTerms 639/301/357/1017
639/301/357/341
639/925/357/1017
639/925/357/341
Biomaterials
Colloids
Condensed Matter Physics
Evaporation
Kinetics
Materials Science
Nanocrystals
Nanotechnology
Optical and Electronic Materials
Order disorder
Real time
Scattering
Self assembly
solar (photovoltaic), solid state lighting, photosynthesis (natural and artificial), charge transport, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)
Solvents
Superlattices
X-rays
Title Kinetics of the self-assembly of nanocrystal superlattices measured by real-time in situ X-ray scattering
URI https://link.springer.com/article/10.1038/nmat4600
https://www.ncbi.nlm.nih.gov/pubmed/26998914
https://www.proquest.com/docview/1799228212
https://www.proquest.com/docview/1799214187
https://www.proquest.com/docview/1825521608
https://www.osti.gov/biblio/1371222
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbt5tIeSvp2kwa1FHoSWcmyZJ9KW7INLQ2lNLA3oycEHHu79h7232fGj83ShlyMHwOWNCPpG2n0DSEftI8mhtywEKJm0nvJ4DmwzEoVZIQpuc9D9vNCnV_K78tsOS64tWNY5TQm9gO1bxyukZ8ic5kA_4CLT6u_DLNG4e7qmELjITlA6jK0ar28dbhgrhxOF2nFAFeIiXw2zU9rwINS4bm2velo1kC3ugtq_rdN2s8-i0PyZISN9POg56fkQaifkcd7ZILPydUPuEfSZdpECrCOtqGKDLBxuLbVFl_Wpm7cegt4sKLtZoUreR3GvrX0elgp9NRuKaDIimHKeXpVU6j9hi7Z2mxp63oqTvjXC3K5OPvz9ZyNiRSYyyTvYJyNAPSkFUWUGXdOSGd99NymQfkiOpfNfQFqsmaeOW5EjHxuFXIVCpXHWKQvyaxu6vCa0NRoAVr3SOMiY5RG6CxEm3GlvVTOJeTj1J6lG1nGMdlFVfa73WleTi2fkHc7ydXArHGHzBGqpAQ0gJS2DmN_XFfyVIM2RUKOJ02VY89ry1s7gR_sPkOfwY0QU4dmM8pwyXN9jwy4zgBt1DxPyKvBCnbFFAqc1ILLhLyfzGKvAP_U4c39pTwijwCDqSEC-JjMuvUmvAWc09mT3pjhmi--nZCDL2cXv37fAPPFAe4
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq5QAcEOUZ2oJBIE5W147jZA-oqoBly7Y9tdLeQvySKqXJsskK5U_xG5nJY1lB1VtveYwUxzP2fGOPvyHkfWx95l2SMed8zKS1ksG9Y5GWykkPLrmtQ3Z2rmaX8vsiWuyQ38NZGEyrHObEdqK2pcE18kNkLhMQH3BxtPzJsGoU7q4OJTQ6s5i75heEbNWnky-g3w9CTL9efJ6xvqoAM5HkNUw6HlCP1GLiZcSNEdJo6y3XoVN24o2JxnYCbdbZODI8E97zsVZI3CdU4j2SL8GUf0-G4MnxZPr02ybAA9_cnWaKFQMcIway2zA5LAB_SoXn6Lbc36iEYXwTtP1vW7b1dtPH5FEPU-lxZ1e7ZMcVT8jDLfLCp-RqDtdI8kxLTwFG0srlngEWd9c6b_BhkRWlWTWAP3NarZe4clhjrl1Fr7uVSUt1QwG15gxL3NOrgkJvr-mCrbKGVqal_oRvPSOXd9LFz8moKAv3ktAwiwVYmUXaGOm9zEQcOa8jrmIrlTEB-Tj0Z2p6VnMsrpGn7e56mKRDzwfk7UZy2TF53CCzhypJAX0gha7BXCNTpzyMQZsiIPuDptJ-pFfpX7uED2xewxjFjZescOW6l-GSJ_EtMhCqA5RS4yQgLzor2DRTKAiKJ1wG5N1gFlsN-OcfXt3eyjfk_uzi7DQ9PTmf75EHgP9Ul328T0b1au0OAGPV-nVr2JT8uOuR9AfBLD1q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrYTggMqzoQUMAnGydu11nOwBIaBdtSysKkSlvYX4JVVKk-0mK5S_xq9jJo9lBVVvveUxUhx7ZvyNPf6GkDeR9al3ccqc8xGT1koG946FWionPUzJTR2yb3N1ci6_LMLFDvndn4XBtMreJzaO2hYG18iHyFwmID7gYui7tIizo-mH5RXDClK409qX02hVZObqXxC-le9Pj2Cs3woxPf7x-YR1FQaYCSWvwAF5QEBSi4mXITdGSKOtt1yPnbITb0w4shNov05HoeGp8J6PtEISP6Fi75GICdz_boRR0YDsfjqen33fhHswU7dnmyLFANWInvp2HA9zQKNS4am6rclwUIBRXwd0_9ukbea-6R6534FW-rHVsgdkx-UPyb0tKsNH5GIG10j5TAtPAVTS0mWeATJ3lzqr8WGe5oVZ1YBGM1qul7iOWGHmXUkv23VKS3VNAcNmDAve04ucQn-v6YKt0pqWpiEChW89Jue30slPyCAvcrdP6DiNBOicRRIZ6b1MRRQ6r0OuIiuVMQF51_dnYjqOcyy1kSXNXvs4TvqeD8irjeSy5fW4RuYAhyQBLIKEugYzj0yV8HEEoykCctiPVNLZfZn81VL4wOY1WCxuw6S5K9adDJc8jm6QgcAdgJUaxQF52mrBpplCQYg84TIgr3u12GrAP__w7OZWviR3wIqSr6fz2QG5C2BQtanIh2RQrdbuOQCuSr_oNJuSn7dtTH8Al0lC_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinetics+of+the+self-assembly+of+nanocrystal+superlattices+measured+by+real-time+in+situ+X-ray+scattering&rft.jtitle=Nature+materials&rft.au=Weidman%2C+Mark+C&rft.au=Smilgies%2C+Detlef-M&rft.au=Tisdale%2C+William+A&rft.date=2016-07-01&rft.issn=1476-4660&rft.eissn=1476-4660&rft.volume=15&rft.issue=7&rft.spage=775&rft_id=info:doi/10.1038%2Fnmat4600&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon