Kinetics of the self-assembly of nanocrystal superlattices measured by real-time in situ X-ray scattering
On solvent evaporation, non-interacting monodisperse colloidal particles self-assemble into a close-packed superlattice. Although the initial and final states can be readily characterized, little is known about the dynamic transformation from colloid to superlattice. Here, by using in situ grazing-i...
Saved in:
Published in | Nature materials Vol. 15; no. 7; pp. 775 - 781 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.07.2016
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | On solvent evaporation, non-interacting monodisperse colloidal particles self-assemble into a close-packed superlattice. Although the initial and final states can be readily characterized, little is known about the dynamic transformation from colloid to superlattice. Here, by using
in situ
grazing-incidence X-ray scattering, we tracked the self-assembly of lead sulfide nanocrystals in real time. Following the first appearance of an ordered arrangement, the superlattice underwent uniaxial contraction and collective rotation as it approached its final body-centred cubic structure. The nanocrystals became crystallographically aligned early in the overall self-assembly process, showing that nanocrystal ordering occurs on a faster timescale than superlattice densification. Our findings demonstrate that synchrotron X-ray scattering is a viable method for studying self-assembly in its native environment, with ample time resolution to extract kinetic rates and observe intermediate configurations. The method could be used for real-time direction of self-assembly processes and to better understand the forces governing self-organization of soft materials.
The self-assembly of lead sulfide nanocrystals into a body-centred cubic lattice can be tracked in real time by using
in situ
grazing-incidence X-ray scattering. |
---|---|
Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22) SC0001088 |
ISSN: | 1476-1122 1476-4660 1476-4660 |
DOI: | 10.1038/nmat4600 |