Enhancing on/off ratio of a dielectric-loaded plasmonic logic gate with an amplitude modulator

Plasmonic waveguides allow focusing, guiding, and manipulating light at the nanoscale and promise the miniaturization of functional optical nanocircuits. Dielectric-loaded plasmonic (DLP) waveguides and logic gates have drawn attention because of their relatively low loss, easy fabrication, and good...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; p. 5020
Main Authors Chang, Kai-Hao, Lin, Zhan-Hong, Lee, Po-Tsung, Huang, Jer-Shing
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 28.03.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Plasmonic waveguides allow focusing, guiding, and manipulating light at the nanoscale and promise the miniaturization of functional optical nanocircuits. Dielectric-loaded plasmonic (DLP) waveguides and logic gates have drawn attention because of their relatively low loss, easy fabrication, and good compatibility with gain and active tunable materials. However, the rather low on/off ratio of DLP logic gates remains the main challenge. Here, we introduce an amplitude modulator and theoretically demonstrate an enhanced on/off ratio of a DLP logic gate for XNOR operation. Multimode interference (MMI) in DLP waveguide is precisely calculated for the design of the logic gate. Multiplexing and power splitting at arbitrary multimode numbers have been theoretically analyzed with respect to the size of the amplitude modulator. An enhanced on/off ratio of 11.26 dB has been achieved. The proposed amplitude modulator can also be used to optimize the performance of other logic gates or MMI-based plasmonic functional devices.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-30823-5