High throughput single cell long-read sequencing analyses of same-cell genotypes and phenotypes in human tumors

Single-cell nanopore sequencing of full-length mRNAs transforms single-cell multi-omics studies. However, challenges include high sequencing errors and dependence on short-reads and/or barcode whitelists. To address these, we develop scNanoGPS to calculate same-cell genotypes (mutations) and phenoty...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; pp. 4124 - 12
Main Authors Shiau, Cheng-Kai, Lu, Lina, Kieser, Rachel, Fukumura, Kazutaka, Pan, Timothy, Lin, Hsiao-Yun, Yang, Jie, Tong, Eric L., Lee, GaHyun, Yan, Yuanqing, Huse, Jason T., Gao, Ruli
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 11.07.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Single-cell nanopore sequencing of full-length mRNAs transforms single-cell multi-omics studies. However, challenges include high sequencing errors and dependence on short-reads and/or barcode whitelists. To address these, we develop scNanoGPS to calculate same-cell genotypes (mutations) and phenotypes (gene/isoform expressions) without short-read nor whitelist guidance. We apply scNanoGPS onto 23,587 long-read transcriptomes from 4 tumors and 2 cell-lines. Standalone, scNanoGPS deconvolutes error-prone long-reads into single-cells and single-molecules, and simultaneously accesses both phenotypes and genotypes of individual cells. Our analyses reveal that tumor and stroma/immune cells express distinct combination of isoforms (DCIs). In a kidney tumor, we identify 924 DCI genes involved in cell-type-specific functions such as PDE10A in tumor cells and CCL3 in lymphocytes. Transcriptome-wide mutation analyses identify many cell-type-specific mutations including VEGFA mutations in tumor cells and HLA-A mutations in immune cells, highlighting the critical roles of different mutant populations in tumors. Together, scNanoGPS facilitates applications of single-cell long-read sequencing technologies. There is a need for methods that allow the analysis of single-cell long-read sequencing data without depending on known barcode lists or short-read sequencing. Here, the authors develop scNanoGPS, a tool that can independently deconvolute long reads into single cells and single molecules, and apply it on tumour and cell line data.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-39813-7