Ucp2-dependent microglia-neuronal coupling controls ventral hippocampal circuit function and anxiety-like behavior

Microglia have been implicated in synapse remodeling by phagocytosis of synaptic elements in the adult brain, but the mechanisms involved in the regulation of this process are ill-defined. By examining microglia-neuronal interaction in the ventral hippocampus, we found a significant reduction in spi...

Full description

Saved in:
Bibliographic Details
Published inMolecular psychiatry Vol. 26; no. 7; pp. 2740 - 2752
Main Authors Yasumoto, Yuki, Stoiljkovic, Milan, Kim, Jung Dae, Sestan-Pesa, Matija, Gao, Xiao-Bing, Diano, Sabrina, Horvath, Tamas L.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.07.2021
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Microglia have been implicated in synapse remodeling by phagocytosis of synaptic elements in the adult brain, but the mechanisms involved in the regulation of this process are ill-defined. By examining microglia-neuronal interaction in the ventral hippocampus, we found a significant reduction in spine synapse number during the light phase of the light/dark cycle accompanied by increased microglia-synapse contacts and an elevated amount of microglial phagocytic inclusions. This was followed by a transient rise in microglial production of reactive oxygen species (ROS) and a concurrent increase in expression of uncoupling protein 2 ( Ucp2 ), a regulator of mitochondrial ROS generation. Conditional ablation of Ucp2 from microglia hindered phasic elimination of spine synapses with consequent accumulations of ROS and lysosome-lipid droplet complexes, which resulted in hippocampal neuronal circuit dysfunctions assessed by electrophysiology, and altered anxiety-like behavior. These observations unmasked a novel and chronotypical interaction between microglia and neurons involved in the control of brain functions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1359-4184
1476-5578
1476-5578
DOI:10.1038/s41380-021-01105-1