Chronic clozapine treatment improves prenatal infection-induced working memory deficits without influencing adult hippocampal neurogenesis

Background Converging evidence indicates that prenatal exposure to immune challenge can induce long-term cognitive deficits relevant to schizophrenia. Such cognitive impairments may be related to deficient hippocampal neurogenesis at adult age. Objectives In the present study, we sought evidence for...

Full description

Saved in:
Bibliographic Details
Published inPsychopharmacologia Vol. 208; no. 4; pp. 531 - 543
Main Authors Meyer, Urs, Knuesel, Irene, Nyffeler, Myriel, Feldon, Joram
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer-Verlag 01.03.2010
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0033-3158
1432-2072
1432-2072
DOI10.1007/s00213-009-1754-6

Cover

Loading…
More Information
Summary:Background Converging evidence indicates that prenatal exposure to immune challenge can induce long-term cognitive deficits relevant to schizophrenia. Such cognitive impairments may be related to deficient hippocampal neurogenesis at adult age. Objectives In the present study, we sought evidence for the possibility that chronic treatment with the reference atypical antipsychotic drug clozapine may improve prenatal infection-induced cognitive dysfunctions by stimulating adult hippocampal neurogenesis. Methods This hypothesis was tested in a well-established mouse model of prenatal immune challenge which is based on prenatal administration of the viral mimic, polyriboinosinic–polyribocytidilic acid (PolyI:C). Results We found that maternal PolyI:C (5 mg/kg, i.v.) exposure on gestation day 17 led to significant spatial working memory impairment and reduced hippocampal neurogenesis in the resulting offspring at adult age. The latter effect was apparent in postmortem immunohistochemical analyses of the cell proliferation marker bromodeoxyuridine and the microtubule-associated protein doublecortin, a marker of newborn neuronal cells. Chronic (3 weeks) administration of clozapine (5 mg/kg/day, i.p.) significantly improved the prenatal PolyI:C-induced working memory deficits, while at the same time, it negatively affected working memory performance in adult offspring born to control mothers. These bidirectional cognitive effects of clozapine were not paralleled by concomitant effects on adult hippocampal neurogenesis. Conclusions Our findings do not support the hypothesis that the atypical antipsychotic drug clozapine may influence cognitive functions by acting on adult neurogenesis in the hippocampus, regardless of whether the drug is administered to subjects with or without a neurodevelopmental predisposition to adult neuropathology.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0033-3158
1432-2072
1432-2072
DOI:10.1007/s00213-009-1754-6