Large-Field Visual Motion Directly Induces an Involuntary Rapid Manual Following Response

Recent neuroscience studies have been concerned with how aimed movements are generated on the basis of target localization. However, visual information from the surroundings as well as from the target can influence arm motor control, in a manner similar to known effects in postural and ocular motor...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 25; no. 20; pp. 4941 - 4951
Main Authors Saijo, Naoki, Murakami, Ikuya, Nishida, Shin'ya, Gomi, Hiroaki
Format Journal Article
LanguageEnglish
Published United States Soc Neuroscience 18.05.2005
Society for Neuroscience
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Recent neuroscience studies have been concerned with how aimed movements are generated on the basis of target localization. However, visual information from the surroundings as well as from the target can influence arm motor control, in a manner similar to known effects in postural and ocular motor control. Here, we show an ultra-fast manual motor response directly induced by a large-field visual motion. This rapid response aided reaction when the subject moved his hand in the direction of visual motion, suggesting assistive visually evoked manual control during postural movement. The latency of muscle activity generating this response was as short as that of the ocular following responses to the visual motion. Abrupt visual motion entrained arm movement without affecting perceptual target localization, and the degrees of motion coherence and speed of the visual stimulus modulated this arm response. This visuomotor behavior was still observed when the visual motion was confined to the "follow-through" phase of a hitting movement, in which no target existed. An analysis of the arm movements suggests that the hitting follow through made by the subject is not a part of a reaching movement. Moreover, the arm response was systematically modulated by hand bias forces, suggesting that it results from a reflexive control mechanism. We therefore propose that its mechanism is radically distinct from motor control for aimed movements to a target. Rather, in an analogy with reflexive eye movement stabilizing a retinal image, we consider that this mechanism regulates arm movements in parallel with voluntary motor control.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0270-6474
1529-2401
DOI:10.1523/JNEUROSCI.4143-04.2005