How can we establish animal models of HIV‐associated lymphoma?
Human immunodeficiency virus (HIV) infection is strongly associated with a heightened incidence of lymphomas. To mirror the natural course of human HIV infection, animal models have been developed. These models serve as valuable tools to investigate disease pathobiology, assess antiretroviral and im...
Saved in:
Published in | Animal models and experimental medicine Vol. 7; no. 4; pp. 484 - 496 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
John Wiley & Sons, Inc
01.08.2024
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Human immunodeficiency virus (HIV) infection is strongly associated with a heightened incidence of lymphomas. To mirror the natural course of human HIV infection, animal models have been developed. These models serve as valuable tools to investigate disease pathobiology, assess antiretroviral and immunomodulatory drugs, explore viral reservoirs, and develop eradication strategies. However, there are currently no validated in vivo models of HIV‐associated lymphoma (HAL), hampering progress in this crucial domain, and scant attention has been given to developing animal models dedicated to studying HAL, despite their pivotal role in advancing knowledge. This review provides a comprehensive overview of the existing animal models of HAL, which may enhance our understanding of the underlying pathogenesis and approaches for malignancies linked to HIV infection.
This review provides a comprehensive overview of the existing animal models of HAL, which may enhance our understanding of the underlying pathogenesis and approaches for malignancies linked to HIV infection. |
---|---|
Bibliography: | Qing Xiao and Liuyue Zhai contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ISSN: | 2576-2095 2096-5451 2576-2095 |
DOI: | 10.1002/ame2.12409 |