Melt fracture and wall slip of thermoplastic vulcanizates
Thermoplastic vulcanizates (TPVs) are blends of polypropylene (PP) (thermoplastic phase) and ethylene propylene diene monomer (EPDM) rubber (rubber phase) in which a high content of rubber EPDM is cross‐linked and dispersed in a thermoplastic matrix (PP) in the presence of oil (lubricant) and filler...
Saved in:
Published in | Polymer engineering and science Vol. 61; no. 4; pp. 942 - 958 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.04.2021
Society of Plastics Engineers, Inc Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Thermoplastic vulcanizates (TPVs) are blends of polypropylene (PP) (thermoplastic phase) and ethylene propylene diene monomer (EPDM) rubber (rubber phase) in which a high content of rubber EPDM is cross‐linked and dispersed in a thermoplastic matrix (PP) in the presence of oil (lubricant) and filler. Depending on the molecular characteristics of the constituent polymers, the level of curing and the amount of cross‐linked rubber, their processing (extrusion) exhibits various difficulties such as melt fracture (extrudate distortions). In this study, a number of different TPVs with various characteristics, including the degree of curing and amount of cross‐linked rubber are examined in capillary extrusion at two different temperatures (190°C and 205°C) relevant to real processing. First, the effect of the temperature on the yield stress is investigated using rheological measurements. Consequently, the flow behavior of the TPVs in capillary flow is studied concluding that TPVs slip massively (nearly plug flow) due to the presence of lubricant and the vulcanized rubber phase. Although there is little slip observed in PP samples, EPDMs themselves exhibit severe slip and melt fracture. As a consequence, the TPV samples essentially follow the slip behavior of EPDMs. Finally, the melt fracture analysis of several TPVs has shown that with increase of temperature and amount of cross‐linked rubber, the severity of TPVs' surface defects increases accordingly. |
---|---|
Bibliography: | Funding information ExxonMobil Research and Engineering Company, Grant/Award Number: grant |
ISSN: | 0032-3888 1548-2634 |
DOI: | 10.1002/pen.25588 |