investigation of intracellular glycosylation activities in CHO cells: Effects of nucleotide sugar precursor feeding

Controlling glycosylation of recombinant proteins produced by CHO cells is highly desired as it can be directed towards maintaining or increasing product quality. To further our understanding of the different factors influencing glycosylation, a glycosylation sub-array of 79 genes and a capillary el...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology and bioengineering Vol. 107; no. 2; pp. 321 - 336
Main Authors Wong, Niki S.C, Wati, Lydia, Nissom, Peter M, Feng, H.T, Lee, M.M, Yap, Miranda G.S
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.10.2010
Wiley
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Controlling glycosylation of recombinant proteins produced by CHO cells is highly desired as it can be directed towards maintaining or increasing product quality. To further our understanding of the different factors influencing glycosylation, a glycosylation sub-array of 79 genes and a capillary electrophoresis method which simultaneously analyzes 12 nucleotides and 7 nucleotide sugars; were used to generate intracellular N-glycosylation profiles. Specifically, the effects of nucleotide sugar precursor feeding on intracellular glycosylation activities were analyzed in CHO cells producing recombinant human interferon-γ (IFN-γ). Galactose (±uridine), glucosamine (±uridine), and N-acetylmannosamine (ManNAc) (±cytidine) feeding resulted in 12%, 28%, and 32% increase in IFN-γ sialylation as compared to the untreated control cultures. This could be directly attributed to increases in nucleotide sugar substrates, UDP-Hex (~20-fold), UDP-HexNAc (6- to 15-fold) and CMP-sialic acid (30- to 120-fold), respectively. Up-regulation of B4gal and St3gal could also have enhanced glycan addition onto the proteins, leading to more complete glycosylation (sialylation). Combined feeding of glucosamine + uridine and ManNAc + cytidine increased UDP-HexNAc and CMP-sialic acid by another two- to fourfold as compared to feeding sugar precursors alone. However, it did not lead to a synergistic increase in IFN-γ sialylation. Other factors such as glycosyltransferase or glycan substrate levels could have become limiting. In addition, uridine feeding increased the levels of uridine- and cytidine-activated nucleotide sugars simultaneously, which could imply that uridine is one of the limiting substrates for nucleotide sugar synthesis in the study. Hence, the characterization of intracellular glycosylation activities has increased our understanding of how nucleotide sugar precursor feeding influence glycosylation of recombinant proteins produced in CHO cells. It has also led to the optimization of more effective strategies for manipulating glycan quality. Biotechnol. Bioeng. 2010;107: 321-336.
Bibliography:http://dx.doi.org/10.1002/bit.22812
ArticleID:BIT22812
ark:/67375/WNG-D6LB7XNN-H
istex:D3156E712868A5664AFE73DAAC24C34BAC470B4D
Biomedical Research Council of A*STAR (Agency for Science, Technology and Research), Singapore
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0006-3592
1097-0290
1097-0290
DOI:10.1002/bit.22812