Effects of microRNA-298 on APP and BACE1 translation differ according to cell type and 3′-UTR variation

Alzheimer’s disease (AD) is marked by neurofibrillary tangles and senile plaques composed of amyloid β (Aβ) peptides. However, specific contributions of different cell types to Aβ deposition remain unknown. Non-coding microRNAs (miRNA) play important roles in AD by regulating translation of major as...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 12; no. 1; pp. 3074 - 16
Main Authors Wang, Ruizhi, Lahiri, Debomoy K.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 23.02.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Alzheimer’s disease (AD) is marked by neurofibrillary tangles and senile plaques composed of amyloid β (Aβ) peptides. However, specific contributions of different cell types to Aβ deposition remain unknown. Non-coding microRNAs (miRNA) play important roles in AD by regulating translation of major associated proteins, such as Aβ precursor protein (APP) and β-site APP-cleaving enzyme (BACE1), two key proteins associated with Aβ biogenesis. MiRNAs typically silence protein expression via binding specific sites in mRNAs’ 3′-untranslated regions (3′-UTR). MiRNAs regulate protein levels in a cell-type specific manner; however, mechanisms of the variation of miRNA activity remain unknown. We report that miR-298 treatment reduced native APP and BACE1 protein levels in an astrocytic but not in a neuron-like cell line. From miR-298’s effects on APP-3′-UTR activity and native protein levels, we infer that differences in APP 3′-UTR length could explain differential miR-298 activity. Such varied or truncated, but natural, 3′-UTR specific to a given cell type provides an opportunity to regulate native protein levels by particular miRNA. Thus, miRNA’s effect tailoring to a specific cell type, bypassing another undesired cell type with a truncated 3′-UTR would potentially advance clinically-relevant translational research.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-05164-4