Remote Stabilization Via Communication Networks With a Distributed Control Law

In this note, we investigate the problem of remote stabilization via communication networks involving some time-varying delays of known average dynamics. This problem arises when the control law is remotely implemented and leads to the problem of stabilizing an open-loop unstable system with time-va...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 52; no. 8; pp. 1480 - 1485
Main Authors Witrant, E., Canudas-de-Wit, C., Georges, D., Alamir, M.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.08.2007
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this note, we investigate the problem of remote stabilization via communication networks involving some time-varying delays of known average dynamics. This problem arises when the control law is remotely implemented and leads to the problem of stabilizing an open-loop unstable system with time-varying delay. We use a time-varying horizon predictor to design a stabilizing control law that sets the poles of the closed-loop system. The computation of the horizon of the predictor is investigated and the proposed control law explicitly takes into account an estimation of the average delay dynamics. The resulting closed loop system robustness with respect to some uncertainties on the delay estimation is also considered. Simulation results are finally presented.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0018-9286
1558-2523
1558-2523
DOI:10.1109/TAC.2007.902757