An efficient self-attention network for skeleton-based action recognition
There has been significant progress in skeleton-based action recognition. Human skeleton can be naturally structured into graph, so graph convolution networks have become the most popular method in this task. Most of these state-of-the-art methods optimized the structure of human skeleton graph to o...
Saved in:
Published in | Scientific reports Vol. 12; no. 1; pp. 4111 - 10 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
08.03.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | There has been significant progress in skeleton-based action recognition. Human skeleton can be naturally structured into graph, so graph convolution networks have become the most popular method in this task. Most of these state-of-the-art methods optimized the structure of human skeleton graph to obtain better performance. Based on these advanced algorithms, a simple but strong network is proposed with three major contributions. Firstly, inspired by some adaptive graph convolution networks and non-local blocks, some kinds of self-attention modules are designed to exploit spatial and temporal dependencies and dynamically optimize the graph structure. Secondly, a light but efficient architecture of network is designed for skeleton-based action recognition. Moreover, a trick is proposed to enrich the skeleton data with bones connection information and make obvious improvement to the performance. The method achieves 90.5% accuracy on cross-subjects setting (NTU60), with 0.89M parameters and 0.32 GMACs of computation cost. This work is expected to inspire new ideas for the field. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-022-08157-5 |