RNAmetasome network for macromolecule biogenesis in human cells

RNA plays a central role in macromolecule biogenesis for various pathways, such as gene expression, ribosome biogenesis, and chromatin remodeling. However, RNA must be converted from its nascent to functional forms for that role. Here, we describe a large RNA metabolic network (RNAmetasome network)...

Full description

Saved in:
Bibliographic Details
Published inCommunications biology Vol. 4; no. 1; p. 1399
Main Authors Iuchi, Shiro, Paulo, Joao A.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 15.12.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:RNA plays a central role in macromolecule biogenesis for various pathways, such as gene expression, ribosome biogenesis, and chromatin remodeling. However, RNA must be converted from its nascent to functional forms for that role. Here, we describe a large RNA metabolic network (RNAmetasome network) for macromolecule biogenesis in human cells. In HEK293T, the network consists of proteins responsible for gene expression, splicing, ribosome biogenesis, chromatin remodeling, and cell cycle. Reciprocal immunoprecipitations show that MKI67, GNL2, MDN1, and ELMSAN1 are core proteins of the network, and knockdown of either MKI67 or GNL2 affects the state of the other protein, MDN1, and some other network members. Furthermore, GNL2 knockdown retards cell proliferation. Several proteins of the RNAmetasome network are diminished in Hela.cl1, and this diminishment is associated with low expression of MDN1 and elevated MKI67 degradation. These results together suggest that the RNAmetasome network is present in human cells and associated with proliferation, and that MKI67, GNL2, and MDN1 play an important role in organizing the RNAmetasome network. Iuchi and Paulo identify a large metabolic complex for macromolecule biogenesis composed of numerous RNA processing proteins in HEK293T cells, which the authors term the RNAmetasome. The authors identify the complex by mass-spec using ELMSAN1 as bait and utilize reciprocal immunoprecipitation and immunocytochemistry for validation, and find that MKI67, GNL2, and MDN1 have important roles organizing the RNAmetasome network.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2399-3642
2399-3642
DOI:10.1038/s42003-021-02928-y