Classification of static postures with wearable sensors mounted on loose clothing
Inertial Measurement Units (IMUs) are a potential way to monitor the mobility of people outside clinical or laboratory settings at an acceptable cost. To increase accuracy, multiple IMUs can be used. By embedding multiple sensors into everyday clothing, it is possible to simplify having to put on in...
Saved in:
Published in | Scientific reports Vol. 13; no. 1; p. 131 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
04.01.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Inertial Measurement Units (IMUs) are a potential way to monitor the mobility of people outside clinical or laboratory settings at an acceptable cost. To increase accuracy, multiple IMUs can be used. By embedding multiple sensors into everyday clothing, it is possible to simplify having to put on individual sensors, ensuring sensors are correctly located and oriented. This research demonstrates how clothing-mounted IMU readings can be used to identify 4 common postures: standing, sitting, lying down and sitting on the floor. Data were collected from 5 healthy adults, with each providing 1–4 days of data with approximately 5 h each day. Each day, participants performed a fixed set of activities that were video-recorded to provide a ground truth. This is an analysis of accelerometry data from 3 sensors incorporated into right trouser-leg at the waist, thigh and ankle. Data were classified as static/ dynamic activities using a K-nearest neighbour (KNN) algorithm. For static activities, the inclination angles of the three sensors were estimated and used to train a second KNN classifier. For this highly-selected dataset (60000–70000 data points/posture), the static postures were classified with 100% accuracy, illustrating the potential for clothing-mounted sensors to be used in posture classification. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-022-27306-4 |