Sustainable biopolymer soil stabilization in saline rich, arid conditions: a ‘micro to macro’ approach
Water scarcity in semi-arid/arid regions is driving the use of salt water in mining operations. A consequence of this shift, is the potentially unheeded effect upon Mine Tailing (MT) management. With existing stabilization/solidification methodologies exhibiting vulnerability to MT toxicity and sali...
Saved in:
Published in | Scientific reports Vol. 12; no. 1; p. 2880 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
21.02.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Water scarcity in semi-arid/arid regions is driving the use of salt water in mining operations. A consequence of this shift, is the potentially unheeded effect upon Mine Tailing (MT) management. With existing stabilization/solidification methodologies exhibiting vulnerability to MT toxicity and salinity effects, it is essential to explore the scope for more environmentally durable sustainable alternatives under these conditions. Within this study we investigate the effects of salinity (NaCl, 0–2.5 M) and temperatures associated with arid regions (25 °C, 40 °C), on Locust Bean Gum (LB) biopolymer stabilization of MT exemplar and sand (control) soil systems. A cross-disciplinary ‘micro to macro’ pipeline is employed, from a Membrane Enabled Bio-mineral Affinity Screen (MEBAS), to Mineral Binding Characterisation (MBC), leading finally to Geotechnical Verification (GV). As predicted by higher Fe
2
O
3
LB binding affinity in saline in the MEBAS studies, LB with 1.25 M NaCl, results in the greatest soil strength in the MT exemplar after 7 days of curing at 40 °C. Under these most challenging conditions for other soil strengthening systems, an overall UCS peak of 5033 kPa is achieved. MBC shows the critical and direct relationship between Fe
2
O
3
-LB in saltwater to be ‘high-affinity’ at the molecular level and ‘high-strength’ achieved at the geotechnical level. This is attributed to biopolymer binding group’s increased availability, with their ‘salting-in’ as NaCl concentrations rises to 1.25 M and then ‘salting-out’ at higher concentrations. This study highlights the potential of biopolymers as robust, sustainable, soil stabilization additives in challenging environments. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-022-06374-6 |