Site-specific characterization of endogenous SUMOylation across species and organs

Small ubiquitin-like modifiers (SUMOs) are post-translational modifications that play crucial roles in most cellular processes. While methods exist to study exogenous SUMOylation, large-scale characterization of endogenous SUMO2/3 has remained technically daunting. Here, we describe a proteomics app...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 9; no. 1; pp. 2456 - 17
Main Authors Hendriks, Ivo A., Lyon, David, Su, Dan, Skotte, Niels H., Daniel, Jeremy A., Jensen, Lars J., Nielsen, Michael L.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 25.06.2018
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Small ubiquitin-like modifiers (SUMOs) are post-translational modifications that play crucial roles in most cellular processes. While methods exist to study exogenous SUMOylation, large-scale characterization of endogenous SUMO2/3 has remained technically daunting. Here, we describe a proteomics approach facilitating system-wide and in vivo identification of lysines modified by endogenous and native SUMO2. Using a peptide-level immunoprecipitation enrichment strategy, we identify 14,869 endogenous SUMO2/3 sites in human cells during heat stress and proteasomal inhibition, and quantitatively map 1963 SUMO sites across eight mouse tissues. Characterization of the SUMO equilibrium highlights striking differences in SUMO metabolism between cultured cancer cells and normal tissues. Targeting preferences of SUMO2/3 vary across different organ types, coinciding with markedly differential SUMOylation states of all enzymes involved in the SUMO conjugation cascade. Collectively, our systemic investigation details the SUMOylation architecture across species and organs and provides a resource of endogenous SUMOylation sites on factors important in organ-specific functions. Proteomics is a powerful method to study protein SUMOylation, but system-wide insights into endogenous SUMO2/3 modification events are still sparse. Here, the authors develop a more sensitive SUMO proteomics approach, providing detailed maps of endogenous SUMO2/3 sites in human cells and mouse tissues.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-04957-4