X-Ray snapshots of a pyridoxal enzyme: a catalytic mechanism involving concerted [1,5]-hydrogen sigmatropy in methionine γ-lyase

Pyridoxal 5′-phosphate (PLP)-enzymes are essentially involved in amino acid and amine metabolism of a wide variety of organisms. Despite their extensive biochemical studies, there are little evidence and structural data to comprehensively elaborate the catalytic mechanism. We obtained X-ray snapshot...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 7; no. 1; pp. 4874 - 10
Main Authors Sato, Dan, Shiba, Tomoo, Karaki, Tsuyoshi, Yamagata, Wataru, Nozaki, Tomoyoshi, Nakazawa, Takashi, Harada, Shigeharu
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 07.07.2017
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Pyridoxal 5′-phosphate (PLP)-enzymes are essentially involved in amino acid and amine metabolism of a wide variety of organisms. Despite their extensive biochemical studies, there are little evidence and structural data to comprehensively elaborate the catalytic mechanism. We obtained X-ray snapshots of l-methionine γ-lyase from Entamoeba histolytica (EhMGL), a PLP-enzyme catalyzing the γ-elimination reaction of methionine. Here, we suggest a catalytic mechanism of EhMGL by using the X-ray snapshots covering all stages of this multistep catalysis reaction. Initial formation of a Michaelis complex is followed by the migration of double bond from the C4′=Nα–Cα moiety in an intermediate PLP-methionine imine to C4′–Nα=Cα in pyridoxamine 5′-phosphate (PMP)-α,β-dehydromethionine imine without intervention of a putative quinonoid intermediate. The enzyme can facilitate the subsequent γ-elimination of methanethiol by the possible general acid-base catalysis of Tyr108 for the E1cB mechanism, enabling to form the ene-imine C4′–Nα=Cα–Cβ=Cγ structure with the s- cis conformation, which is prerequisite for the non-enzymatic symmetry-allowed suprafacial [1,5]-hydrogen shift to complete the catalytic cycle by releasing α-ketobutyrate. The mechanism based on the X-ray snapshots is consistent with the reactivity of MGL toward methionine analogues. The generality of such a mechanism involving non-enzymatic concerted reaction in other PLP enzymes is discussed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-017-05032-6