X-Ray snapshots of a pyridoxal enzyme: a catalytic mechanism involving concerted [1,5]-hydrogen sigmatropy in methionine γ-lyase
Pyridoxal 5′-phosphate (PLP)-enzymes are essentially involved in amino acid and amine metabolism of a wide variety of organisms. Despite their extensive biochemical studies, there are little evidence and structural data to comprehensively elaborate the catalytic mechanism. We obtained X-ray snapshot...
Saved in:
Published in | Scientific reports Vol. 7; no. 1; pp. 4874 - 10 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
07.07.2017
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Pyridoxal 5′-phosphate (PLP)-enzymes are essentially involved in amino acid and amine metabolism of a wide variety of organisms. Despite their extensive biochemical studies, there are little evidence and structural data to comprehensively elaborate the catalytic mechanism. We obtained X-ray snapshots of l-methionine γ-lyase from
Entamoeba histolytica
(EhMGL), a PLP-enzyme catalyzing the γ-elimination reaction of methionine. Here, we suggest a catalytic mechanism of EhMGL by using the X-ray snapshots covering all stages of this multistep catalysis reaction. Initial formation of a Michaelis complex is followed by the migration of double bond from the C4′=Nα–Cα moiety in an intermediate PLP-methionine imine to C4′–Nα=Cα in pyridoxamine 5′-phosphate (PMP)-α,β-dehydromethionine imine without intervention of a putative quinonoid intermediate. The enzyme can facilitate the subsequent γ-elimination of methanethiol by the possible general acid-base catalysis of Tyr108 for the E1cB mechanism, enabling to form the ene-imine C4′–Nα=Cα–Cβ=Cγ structure with the s-
cis
conformation, which is prerequisite for the non-enzymatic symmetry-allowed suprafacial [1,5]-hydrogen shift to complete the catalytic cycle by releasing α-ketobutyrate. The mechanism based on the X-ray snapshots is consistent with the reactivity of MGL toward methionine analogues. The generality of such a mechanism involving non-enzymatic concerted reaction in other PLP enzymes is discussed. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-017-05032-6 |