Ultrastrong coupling probed by Coherent Population Transfer
Light-matter interaction, and the understanding of the fundamental physics behind, is the scenario of emerging quantum technologies. Solid state devices allow the exploration of new regimes where ultrastrong coupling strengths are comparable to subsystem energies, and new exotic phenomena like quant...
Saved in:
Published in | Scientific reports Vol. 9; no. 1; pp. 9249 - 12 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
25.06.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Light-matter interaction, and the understanding of the fundamental physics behind, is the scenario of emerging quantum technologies. Solid state devices allow the exploration of new regimes where ultrastrong coupling strengths are comparable to subsystem energies, and new exotic phenomena like quantum phase transitions and ground-state entanglement occur. While experiments so far provided only spectroscopic evidence of ultrastrong coupling, we propose a new
dynamical
protocol for detecting virtual photon pairs in the dressed eigenstates. This is the fingerprint of the violated conservation of the number of excitations, which heralds the symmetry broken by ultrastrong coupling. We show that in flux-based superconducting architectures this photon production channel can be coherently amplified by Stimulated Raman Adiabatic Passage, providing a
unique
tool for an unambiguous dynamical detection of ultrastrong coupling in present day hardware. This protocol could be a benchmark for control of the dynamics of ultrastrong coupling architectures, in view of applications to quantum information and microwave quantum photonics. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-019-45187-y |