Application of a scheimpflug-based biomechanical analyser and tomography in the early detection of subclinical keratoconus in chinese patients

Abstract Background In vivo corneal biomechanics evaluation has been used to help screen early keratoconus in recent years. This study is to evaluate the value of a Scheimpflug-based biomechanical analyser combined with tomography in detecting subclinical keratoconus by distinguishing normal eyes fr...

Full description

Saved in:
Bibliographic Details
Published inBMC ophthalmology Vol. 21; no. 1; pp. 1 - 339
Main Authors Liu, Yan, Zhang, Yu, Chen, Yueguo
Format Journal Article
LanguageEnglish
Published London BioMed Central Ltd 20.09.2021
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Background In vivo corneal biomechanics evaluation has been used to help screen early keratoconus in recent years. This study is to evaluate the value of a Scheimpflug-based biomechanical analyser combined with tomography in detecting subclinical keratoconus by distinguishing normal eyes from frank keratoconus (KC) and forme frusta keratoconus (FFKC) eyes in Chinese patients. Methods Study design: diagnostic test. This study included 31 bilateral frank keratoconus patients, 27 unilateral clinically manifesting keratoconus patients with very asymmetric eyes, and 79 control subjects with normal corneas. Corneal morphological and biomechanical parameters were measured using a Pentacam HR and a Corvis ST (OCULUS, Wetzlar, Germany). The diagnostic ability of computed parameters reflecting corneal biomechanical and morphological traits [including the Belin-Ambrósio deviation index (BAD_D), the Corvis biomechanical index (CBI) and the tomographic and biomechanical index (TBI)] was determined using receiver operating characteristic (ROC) curve analysis and compared by the DeLong test. Additionally, the area under the curve (AUC), the best cut-off values, and the Youden index for each parameter were reported. A novel corneal stiffness parameter, the stress-strain index (SSI), was also compared between KC, FFKC and normal eyes. Results Every morphological and biomechanical index analysed in this study was significantly different among KC, FFKC and normal eyes ( P  = 0.000). The TBI was most valuable in detecting subclinical keratoconus (FFKC eyes), with an AUC of 0.928 ( P  = 0.000), and both forms of corneal ectasia (FFKC and frank KC eyes), with an AUC of 0.966 ( P  = 0.000). The sensitivity and specificity of the TBI was 97.5 and 77.8 % in detecting FFKC and 97.5 and 89.7 % in detecting any KC, respectively, with a cut-off value of 0.375. The morphological index BAD_D and the biomechanical index CBI were also very useful in distinguishing eyes with any KC from normal eyes, with AUCs of 0.965 and 0.934, respectively. The SSI was significantly different between KC, FFKC and normal eyes ( P  = 0.000), indicating an independent decrease in corneal stiffness in KC eyes. Conclusions The combination of a Scheimpflug-based biomechanical analyser and tomography could increase the accuracy in detecting subclinical keratoconus in Chinese patients. The TBI was the most valuable index for detecting subclinical keratoconus, with a high sensitivity and specificity. Evaluation of corneal biomechanical properties in refractive surgery candidates could be helpful for recognizing potential keratoconic eyes and increasing surgical safety.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1471-2415
1471-2415
DOI:10.1186/s12886-021-02102-2