TRAF3IP3 negatively regulates cytosolic RNA induced anti-viral signaling by promoting TBK1 K48 ubiquitination

Innate immunity to nucleic acids forms the backbone for anti-viral immunity and several inflammatory diseases. Upon sensing cytosolic viral RNA, retinoic acid-inducible gene-I-like receptors (RLRs) interact with the mitochondrial antiviral signaling protein (MAVS) and activate TANK-binding kinase 1...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 11; no. 1; p. 2193
Main Authors Deng, Meng, Tam, Jason W., Wang, Lufei, Liang, Kaixin, Li, Sirui, Zhang, Lu, Guo, Haitao, Luo, Xiaobo, Zhang, Yang, Petrucelli, Alex, Davis, Beckley K., Conti, Brian J., June Brickey, W., Ko, Ching-Chang, Lei, Yu L., Sun, Shaocong, Ting, Jenny P. -Y.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 04.05.2020
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Innate immunity to nucleic acids forms the backbone for anti-viral immunity and several inflammatory diseases. Upon sensing cytosolic viral RNA, retinoic acid-inducible gene-I-like receptors (RLRs) interact with the mitochondrial antiviral signaling protein (MAVS) and activate TANK-binding kinase 1 (TBK1) to induce type I interferon (IFN-I). TRAF3-interacting protein 3 (TRAF3IP3, T3JAM) is essential for T and B cell development. It is also well-expressed by myeloid cells, where its role is unknown. Here we report that TRAF3IP3 suppresses cytosolic poly(I:C), 5’ppp-dsRNA, and vesicular stomatitis virus (VSV) triggers IFN-I expression in overexpression systems and Traf3ip3 −/− primary myeloid cells. The mechanism of action is through the interaction of TRAF3IP3 with endogenous TRAF3 and TBK1. This leads to the degradative K48 ubiquitination of TBK1 via its K372 residue in a DTX4-dependent fashion. Mice with myeloid-specific gene deletion of Traf3ip3 have increased RNA virus-triggered IFN-I production and reduced susceptibility to virus. These results identify a function of TRAF3IP3 in the regulation of the host response to cytosolic viral RNA in myeloid cells. RNA viruses can be detected by immune cell pattern recognition receptors, such as RLRs, resulting in MAVS-TBK1-IRF3 signalling and production of antiviral type 1 interferons. Here the authors show that macrophage TRAF3-interacting protein 3 regulates this signalling pathway by interacting with TRAF3 and TBK1 to suppress interferon responses.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-16014-0