Structures of human dual oxidase 1 complex in low-calcium and high-calcium states

Dual oxidases (DUOXs) produce hydrogen peroxide by transferring electrons from intracellular NADPH to extracellular oxygen. They are involved in many crucial biological processes and human diseases, especially in thyroid diseases. DUOXs are protein complexes co-assembled from the catalytic DUOX subu...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 12; no. 1; pp. 155 - 11
Main Authors Wu, Jing-Xiang, Liu, Rui, Song, Kangcheng, Chen, Lei
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 08.01.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Dual oxidases (DUOXs) produce hydrogen peroxide by transferring electrons from intracellular NADPH to extracellular oxygen. They are involved in many crucial biological processes and human diseases, especially in thyroid diseases. DUOXs are protein complexes co-assembled from the catalytic DUOX subunits and the auxiliary DUOXA subunits and their activities are regulated by intracellular calcium concentrations. Here, we report the cryo-EM structures of human DUOX1-DUOXA1 complex in both high-calcium and low-calcium states. These structures reveal the DUOX1 complex is a symmetric 2:2 hetero-tetramer stabilized by extensive inter-subunit interactions. Substrate NADPH and cofactor FAD are sandwiched between transmembrane domain and the cytosolic dehydrogenase domain of DUOX. In the presence of calcium ions, intracellular EF-hand modules might enhance the catalytic activity of DUOX by stabilizing the dehydrogenase domain in a conformation that allows electron transfer. Dual oxidases (DUOXs), assembled from the catalytic DUOX and the auxiliary DUOXA subunits, produce hydrogen peroxide by transferring electrons from intracellular NADPH to extracellular oxygen in a calcium-activated manner. Here authors report the cryo-EM structures of human DUOX1-DUOXA1 complex in both high-calcium and low-calcium states.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-20466-9