Variational autoencoder-based estimation of chronological age and changes in morphological features of teeth

This study led to the development of a variational autoencoder (VAE) for estimating the chronological age of subjects using feature values extracted from their teeth. Further, it determined how given teeth images affected the estimation accuracy. The developed VAE was trained with the first molar an...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; pp. 704 - 11
Main Authors Joo, Subin, Jung, Won, Oh, Seung Eel
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 13.01.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study led to the development of a variational autoencoder (VAE) for estimating the chronological age of subjects using feature values extracted from their teeth. Further, it determined how given teeth images affected the estimation accuracy. The developed VAE was trained with the first molar and canine tooth images, and a parallel VAE structure was further constructed to extract common features shared by the two types of teeth more effectively. The encoder of the VAE was combined with a regression model to estimate the age. To determine which parts of the tooth images were more or less important when estimating age, a method of visualizing the obtained regression coefficient using the decoder of the VAE was developed. The developed age estimation model was trained using data from 910 individuals aged 10–79. This model showed a median absolute error (MAE) of 6.99 years, demonstrating its ability to estimate age accurately. Furthermore, this method of visualizing the influence of particular parts of tooth images on the accuracy of age estimation using a decoder is expected to provide novel insights for future research on explainable artificial intelligence.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-27950-4