In-silico study of the cardiac arrhythmogenic potential of biomaterial injection therapy
Biomaterial injection is a novel therapy to treat ischemic heart failure (HF) that has shown to reduce remodeling and restore cardiac function in recent preclinical studies. While the effect of biomaterial injection in reducing mechanical wall stress has been recently demonstrated, the influence of...
Saved in:
Published in | Scientific reports Vol. 10; no. 1; p. 12990 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
31.07.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Biomaterial injection is a novel therapy to treat ischemic heart failure (HF) that has shown to reduce remodeling and restore cardiac function in recent preclinical studies. While the effect of biomaterial injection in reducing mechanical wall stress has been recently demonstrated, the influence of biomaterials on the electrical behavior of treated hearts has not been elucidated. In this work, we developed computational models of swine hearts to study the electrophysiological vulnerability associated with biomaterial injection therapy. The propagation of action potentials on realistic biventricular geometries was simulated by numerically solving the monodomain electrophysiology equations on anatomically-detailed models of normal, HF untreated, and HF treated hearts. Heart geometries were constructed from high-resolution magnetic resonance images (MRI) where the healthy, peri-infarcted, infarcted and gel regions were identified, and the orientation of cardiac fibers was informed from diffusion-tensor MRI. Regional restitution properties in each case were evaluated by constructing a probability density function of the action potential duration (APD) at different cycle lengths. A comparative analysis of the ventricular fibrillation (VF) dynamics for every heart was carried out by measuring the number of filaments formed after wave braking. Our results suggest that biomaterial injection therapy does not affect the regional dispersion of repolarization when comparing untreated and treated failing hearts. Further, we found that the treated failing heart is more prone to sustain VF than the normal heart, and is at least as susceptible to sustained VF as the untreated failing heart. Moreover, we show that the main features of VF dynamics in a treated failing heart are not affected by the level of electrical conductivity of the biogel injectates. This work represents a novel proof-of-concept study demonstrating the feasibility of computer simulations of the heart in understanding the arrhythmic behavior in novel therapies for HF. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-020-69900-4 |