Identification of stacking faults in silicon carbide by polarization-resolved second harmonic generation microscopy

Although silicon carbide is a highly promising crystalline material for a wide range of electronic devices, extended and point defects which perturb the lattice periodicity hold deep implications with respect to device reliability. There is thus a great need for developing new methods that can detec...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 7; no. 1; pp. 4870 - 9
Main Authors Hristu, Radu, Stanciu, Stefan G., Tranca, Denis E., Polychroniadis, Efstathios K., Stanciu, George A.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 07.07.2017
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Although silicon carbide is a highly promising crystalline material for a wide range of electronic devices, extended and point defects which perturb the lattice periodicity hold deep implications with respect to device reliability. There is thus a great need for developing new methods that can detect silicon carbide defects which are detrimental to device functionality. Our experiment demonstrates that polarization-resolved second harmonic generation microscopy can extend the efficiency of the “optical signature” concept as an all-optical rapid and non-destructive set of investigation methods for the differentiation between hexagonal and cubic stacking faults in silicon carbide. This technique can be used for fast and in situ characterization and optimization of growth conditions for epilayers of silicon carbide and similar materials.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-017-05010-y