Risk of sustained SARS-CoV-2 transmission in Queensland, Australia
We used an agent-based model Covasim to assess the risk of sustained community transmission of SARSCoV-2/COVID-19 in Queensland (Australia) in the presence of high-transmission variants of the virus. The model was calibrated using the demographics, policies, and interventions implemented in the stat...
Saved in:
Published in | Scientific reports Vol. 12; no. 1; p. 6309 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
15.04.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We used an agent-based model
Covasim
to assess the risk of sustained community transmission of SARSCoV-2/COVID-19 in Queensland (Australia) in the presence of high-transmission variants of the virus. The model was calibrated using the demographics, policies, and interventions implemented in the state. Then, using the calibrated model, we simulated possible epidemic trajectories that could eventuate due to leakage of infected cases with high-transmission variants, during a period without recorded cases of locally acquired infections, known in Australian settings as “zero community transmission”. We also examined how the threat of new variants reduces given a range of vaccination levels. Specifically, the model calibration covered the first-wave period from early March 2020 to May 2020. Predicted epidemic trajectories were simulated from early February 2021 to late March 2021. Our simulations showed that one infected agent with the ancestral (A.2.2) variant has a 14% chance of crossing a threshold of sustained community transmission (SCT) (i.e., > 5 infections per day, more than 3 days in a row), assuming no change in the prevailing preventative and counteracting policies. However, one agent carrying the alpha (B.1.1.7) variant has a 43% chance of crossing the same threshold; a threefold increase with respect to the ancestral strain; while, one agent carrying the delta (B.1.617.2) variant has a 60% chance of the same threshold, a fourfold increase with respect to the ancestral strain. The delta variant is 50% more likely to trigger SCT than the alpha variant. Doubling the average number of daily tests from ∼ 6,000 to 12,000 results in a decrease of this SCT probability from 43 to 33% for the alpha variant. However, if the delta variant is circulating we would need an average of 100,000 daily tests to achieve a similar decrease in SCT risk. Further, achieving a full-vaccination coverage of 70% of the adult population, with a vaccine with 70% effectiveness against infection, would decrease the probability of SCT from a single seed of alpha from 43 to 20%, on par with the ancestral strain in a naive population. In contrast, for the same vaccine coverage and same effectiveness, the probability of SCT from a single seed of delta would decrease from 62 to 48%, a risk slightly above the alpha variant in a naive population. Our results demonstrate that the introduction of even a small number of people infected with high-transmission variants dramatically increases the probability of sustained community transmission in Queensland. Until very high vaccine coverage is achieved, a swift implementation of policies and interventions, together with high quarantine adherence rates, will be required to minimise the probability of sustained community transmission. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-022-10349-y |