Artificial selection optimizes clonality in chaya (Cnidoscolus aconitifolius)
The clonal propagation of crops offers several advantages to growers, such as skipping the juvenile phase, faster growth, and reduced mortality. However, it is not known if the wild ancestors of most clonal crops have a similar ability to reproduce clonally. Therefore, it is unclear whether clonalit...
Saved in:
Published in | Scientific reports Vol. 11; no. 1; p. 21017 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
25.10.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The clonal propagation of crops offers several advantages to growers, such as skipping the juvenile phase, faster growth, and reduced mortality. However, it is not known if the wild ancestors of most clonal crops have a similar ability to reproduce clonally. Therefore, it is unclear whether clonality was an ancestral condition, or if it evolved during domestication in the majority of these crops. Here, I assessed some traits that are relevant to clonal propagation using stem cuttings from chaya (
Cnidoscolus aconitifolius
) and compared these traits to those of its wild ancestor. Chaya is highly relevant crop to food security in its domestication center (Yucatan Peninsula) and is now cultivated in several countries. Chaya is also an excellent model for assessing the effect of domestication on clonality because wild relatives and selection targets are known. Specifically, I compared resistance to desiccation, water and resource storage, as well as the production of new organs (shoots and leaves) by the stems of wild and domesticated plants. I also compared their performance in root development and clone survival. I found that, relative to their wild ancestors, the stem cuttings of domesticated chaya had 1.1 times greater storage capacity for water and starch. Additionally, the stems of domesticated plants produced 1.25 times more roots, 2.69 times more shoots and 1.94 more leaves, and their clones lived 1.87 times longer than their wild relatives. In conclusion, the results suggest that artificial selection has optimized water and starch storage by stems in chaya. Because these traits also confer greater fitness (i.e. increased fecundity and survival of clones), they can be considered adaptations to clonal propagation in the agroecosystems where this crop is cultivated. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-021-00592-0 |