Dynamics and mechanism of dimer dissociation of photoreceptor UVR8

Photoreceptors are a class of light-sensing proteins with critical biological functions. UVR8 is the only identified UV photoreceptor in plants and its dimer dissociation upon UV sensing activates UV-protective processes. However, the dissociation mechanism is still poorly understood. Here, by integ...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; p. 93
Main Authors Li, Xiankun, Liu, Zheyun, Ren, Haisheng, Kundu, Mainak, Zhong, Frank W., Wang, Lijuan, Gao, Jiali, Zhong, Dongping
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 10.01.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Photoreceptors are a class of light-sensing proteins with critical biological functions. UVR8 is the only identified UV photoreceptor in plants and its dimer dissociation upon UV sensing activates UV-protective processes. However, the dissociation mechanism is still poorly understood. Here, by integrating extensive mutations, ultrafast spectroscopy, and computational calculations, we find that the funneled excitation energy in the interfacial tryptophan (Trp) pyramid center drives a directional Trp-Trp charge separation in 80 ps and produces a critical transient Trp anion, enabling its ultrafast charge neutralization with a nearby positive arginine residue in 17 ps to destroy a key salt bridge. A domino effect is then triggered to unzip the strong interfacial interactions, which is facilitated through flooding the interface by channel and interfacial water molecules. These detailed dynamics reveal a unique molecular mechanism of UV-induced dimer monomerization. UVR8 is a plant photoreceptor that dissociates into monomers after sensing UV. Here, via ultrafast spectroscopy and computational calculations, the authors describe the dynamics of charge separation and charge neutralization in UVR8 and describe how these unzip interactions at the dimer interface.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-27756-w