Kindlin-2 modulates MafA and β-catenin expression to regulate β-cell function and mass in mice

β-Cell dysfunction and reduction in β-cell mass are hallmark events of diabetes mellitus. Here we show that β-cells express abundant Kindlin-2 and deleting its expression causes severe diabetes-like phenotypes without markedly causing peripheral insulin resistance. Kindlin-2, through its C-terminal...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 11; no. 1; p. 484
Main Authors Zhu, Ke, Lai, Yumei, Cao, Huiling, Bai, Xiaochun, Liu, Chuanju, Yan, Qinnan, Ma, Liting, Chen, Di, Kanaporis, Giedrius, Wang, Junqi, Li, Luyuan, Cheng, Tao, Wang, Yong, Wu, Chuanyue, Xiao, Guozhi
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 24.01.2020
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:β-Cell dysfunction and reduction in β-cell mass are hallmark events of diabetes mellitus. Here we show that β-cells express abundant Kindlin-2 and deleting its expression causes severe diabetes-like phenotypes without markedly causing peripheral insulin resistance. Kindlin-2, through its C-terminal region, binds to and stabilizes MafA, which activates insulin expression. Kindlin-2 loss impairs insulin secretion in primary human and mouse islets in vitro and in mice by reducing, at least in part, Ca 2+ release in β-cells. Kindlin-2 loss activates GSK-3β and downregulates β-catenin, leading to reduced β-cell proliferation and mass. Kindlin-2 loss reduces the percentage of β-cells and concomitantly increases that of α-cells during early pancreatic development. Genetic activation of β-catenin in β-cells restores the diabetes-like phenotypes induced by Kindlin-2 loss. Finally, the inducible deletion of β-cell Kindlin-2 causes diabetic phenotypes in adult mice. Collectively, our results establish an important function of Kindlin-2 and provide a potential therapeutic target for diabetes. Beta cell dysfunction and reduction in beta cell mass are hallmark events in the pathogenesis of diabetes mellitus. We identify focal adhesion protein Kindlin-2 as a key factor that controls insulin synthesis and secretion and beta cell mass by modulating MafA and beta-catenin proteins in pancreatic beta cells.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-14186-y