Myricetin ameliorates ox-LDL-induced HUVECs apoptosis and inflammation via lncRNA GAS5 upregulating the expression of miR-29a-3p

Oxidized low-density lipoprotein (ox-LDL)-induced endothelial cell dysfunction is a significant event in the progression of atherosclerosis. Even Myricetin (Myr) has been exhibited strong antioxidant potency, the effect on atherosclerosis is still elusive. HUVECs were subjected to ox-LDL, before whi...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 11; no. 1; p. 19637
Main Authors Bai, Yunpeng, Liu, Xiankun, Chen, Qingliang, Chen, Tongyun, Jiang, Nan, Guo, Zhigang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 04.10.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Oxidized low-density lipoprotein (ox-LDL)-induced endothelial cell dysfunction is a significant event in the progression of atherosclerosis. Even Myricetin (Myr) has been exhibited strong antioxidant potency, the effect on atherosclerosis is still elusive. HUVECs were subjected to ox-LDL, before which cells were preconditioned with Myr. Cell Counting Kit-8 assay, flow cytometry, quantitative real-time polymerase chain reaction and Western blot were carried out to assess the impacts of ox-LDL and Myr on HUVECs. The expression of EndMT markers was determined by Western blot analysis and immunocytochemistry. In addition, the relationship of GAS5 and miR-29a-3p was evaluated by RNA Fluorescent in Situ Hybridization and RNA immunoprecipitation assay. Myr preconditioning prevented ox-LDL-induced apoptosis, inflammatory response, and EndMT. GAS5 was upregulated in response to ox-LDL while it was down-regulated by Myr preconditioning. GAS5 over-expression attenuates Myr protective effects against ox-LDL–mediated HUVEC injury. Besides, miR-29a-3p is a target of GAS5 and down-regulated miR-29a-3p could further reduce the effects of GAS5 in ox-LDL–mediated HUVEC. Furthermore, Myr inactivated the TLR4/NF-κB signalling pathway in ox-LDL-treated HUVEC by down-regulating GAS5 or upregulating miR-26a-5p. Myr possessed an anti-inflammatory and anti-EndMT function against ox-LDL-induced HUVEC injury by regulating the GAS5/miR-29a-3p, indicating that Myr may have an important therapeutic function for atherosclerosis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-98916-7