Pillar-beam structures prevent layered cathode materials from destructive phase transitions

Energy storage with high energy density and low cost has been the subject of a decades-long pursuit. Sodium-ion batteries are well expected because they utilize abundant resources. However, the lack of competent cathodes with both large capacities and long cycle lives prevents the commercialization...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 12; no. 1; pp. 13 - 11
Main Authors Wang, Yuesheng, Feng, Zimin, Cui, Peixin, Zhu, Wen, Gong, Yue, Girard, Marc-André, Lajoie, Gilles, Trottier, Julie, Zhang, Qinghua, Gu, Lin, Wang, Yan, Zuo, Wenhua, Yang, Yong, Goodenough, John B., Zaghib, Karim
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 04.01.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Energy storage with high energy density and low cost has been the subject of a decades-long pursuit. Sodium-ion batteries are well expected because they utilize abundant resources. However, the lack of competent cathodes with both large capacities and long cycle lives prevents the commercialization of sodium-ion batteries. Conventional cathodes with hexagonal-P2-type structures suffer from structural degradations when the sodium content falls below 33%, or when the integral anions participate in gas evolution reactions. Here, we show a “pillar-beam” structure for sodium-ion battery cathodes where a few inert potassium ions uphold the layer-structured framework, while the working sodium ions could diffuse freely. The thus-created unorthodox orthogonal-P2 K 0.4 [Ni 0.2 Mn 0.8 ]O 2 cathode delivers a capacity of 194 mAh/g at 0.1 C, a rate capacity of 84% at 1 C, and an 86% capacity retention after 500 cycles at 1 C. The addition of the potassium ions boosts simultaneously the energy density and the cycle life. The specific capacity of P2-type sodium-ion battery cathode is limited because full extraction of Na ions leads to structural degradation. Here authors report pillar-beam structured material to overcome this issue by using K pillar ions to uphold the transition metal layers upon extraction of Na ions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-20169-1