Deep Learning for Improved Risk Prediction in Surgical Outcomes

The Norwood surgical procedure restores functional systemic circulation in neonatal patients with single ventricle congenital heart defects, but this complex procedure carries a high mortality rate. In this study we address the need to provide an accurate patient specific risk prediction for one-yea...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 10; no. 1; p. 9289
Main Authors Jalali, Ali, Lonsdale, Hannah, Do, Nhue, Peck, Jacquelin, Gupta, Monesha, Kutty, Shelby, Ghazarian, Sharon R., Jacobs, Jeffrey P., Rehman, Mohamed, Ahumada, Luis M.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 09.06.2020
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Norwood surgical procedure restores functional systemic circulation in neonatal patients with single ventricle congenital heart defects, but this complex procedure carries a high mortality rate. In this study we address the need to provide an accurate patient specific risk prediction for one-year postoperative mortality or cardiac transplantation and prolonged length of hospital stay with the purpose of assisting clinicians and patients’ families in the preoperative decision making process. Currently available risk prediction models either do not provide patient specific risk factors or only predict in-hospital mortality rates. We apply machine learning models to predict and calculate individual patient risk for mortality and prolonged length of stay using the Pediatric Heart Network Single Ventricle Reconstruction trial dataset. We applied a Markov Chain Monte-Carlo simulation method to impute missing data and then fed the selected variables to multiple machine learning models. The individual risk of mortality or cardiac transplantation calculation produced by our deep neural network model demonstrated 89 ± 4% accuracy and 0.95 ± 0.02 area under the receiver operating characteristic curve (AUROC). The C-statistics results for prediction of prolonged length of stay were 85 ± 3% accuracy and AUROC 0.94 ± 0.04. These predictive models and calculator may help to inform clinical and organizational decision making.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-62971-3