Ab initio calculation of real solids via neural network ansatz

Neural networks have been applied to tackle many-body electron correlations for small molecules and physical models in recent years. Here we propose an architecture that extends molecular neural networks with the inclusion of periodic boundary conditions to enable ab initio calculation of real solid...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; pp. 7895 - 9
Main Authors Li, Xiang, Li, Zhe, Chen, Ji
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 22.12.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Neural networks have been applied to tackle many-body electron correlations for small molecules and physical models in recent years. Here we propose an architecture that extends molecular neural networks with the inclusion of periodic boundary conditions to enable ab initio calculation of real solids. The accuracy of our approach is demonstrated in four different types of systems, namely the one-dimensional periodic hydrogen chain, the two-dimensional graphene, the three-dimensional lithium hydride crystal, and the homogeneous electron gas, where the obtained results, e.g. total energies, dissociation curves, and cohesive energies, reach a competitive level with many traditional ab initio methods. Moreover, electron densities of typical systems are also calculated to provide physical intuition of various solids. Our method of extending a molecular neural network to periodic systems can be easily integrated into other neural network structures, highlighting a promising future of ab initio solution of more complex solid systems using neural network ansatz, and more generally endorsing the application of machine learning in materials simulation and condensed matter physics. Solving the many-body electronic structure of real solids is a grand challenge in condensed matter physics and materials science. Here authors present a machine learning ab initio architecture for real solids, which combines molecular neural network wavefunction ansatz and periodic features, providing accurate solutions for a range of solids.
AbstractList Neural networks have been applied to tackle many-body electron correlations for small molecules and physical models in recent years. Here we propose an architecture that extends molecular neural networks with the inclusion of periodic boundary conditions to enable ab initio calculation of real solids. The accuracy of our approach is demonstrated in four different types of systems, namely the one-dimensional periodic hydrogen chain, the two-dimensional graphene, the three-dimensional lithium hydride crystal, and the homogeneous electron gas, where the obtained results, e.g. total energies, dissociation curves, and cohesive energies, reach a competitive level with many traditional ab initio methods. Moreover, electron densities of typical systems are also calculated to provide physical intuition of various solids. Our method of extending a molecular neural network to periodic systems can be easily integrated into other neural network structures, highlighting a promising future of ab initio solution of more complex solid systems using neural network ansatz, and more generally endorsing the application of machine learning in materials simulation and condensed matter physics. Solving the many-body electronic structure of real solids is a grand challenge in condensed matter physics and materials science. Here authors present a machine learning ab initio architecture for real solids, which combines molecular neural network wavefunction ansatz and periodic features, providing accurate solutions for a range of solids.
Solving the many-body electronic structure of real solids is a grand challenge in condensed matter physics and materials science. Here authors present a machine learning ab initio architecture for real solids, which combines molecular neural network wavefunction ansatz and periodic features, providing accurate solutions for a range of solids.
Neural networks have been applied to tackle many-body electron correlations for small molecules and physical models in recent years. Here we propose an architecture that extends molecular neural networks with the inclusion of periodic boundary conditions to enable ab initio calculation of real solids. The accuracy of our approach is demonstrated in four different types of systems, namely the one-dimensional periodic hydrogen chain, the two-dimensional graphene, the three-dimensional lithium hydride crystal, and the homogeneous electron gas, where the obtained results, e.g. total energies, dissociation curves, and cohesive energies, reach a competitive level with many traditional ab initio methods. Moreover, electron densities of typical systems are also calculated to provide physical intuition of various solids. Our method of extending a molecular neural network to periodic systems can be easily integrated into other neural network structures, highlighting a promising future of ab initio solution of more complex solid systems using neural network ansatz, and more generally endorsing the application of machine learning in materials simulation and condensed matter physics.Neural networks have been applied to tackle many-body electron correlations for small molecules and physical models in recent years. Here we propose an architecture that extends molecular neural networks with the inclusion of periodic boundary conditions to enable ab initio calculation of real solids. The accuracy of our approach is demonstrated in four different types of systems, namely the one-dimensional periodic hydrogen chain, the two-dimensional graphene, the three-dimensional lithium hydride crystal, and the homogeneous electron gas, where the obtained results, e.g. total energies, dissociation curves, and cohesive energies, reach a competitive level with many traditional ab initio methods. Moreover, electron densities of typical systems are also calculated to provide physical intuition of various solids. Our method of extending a molecular neural network to periodic systems can be easily integrated into other neural network structures, highlighting a promising future of ab initio solution of more complex solid systems using neural network ansatz, and more generally endorsing the application of machine learning in materials simulation and condensed matter physics.
Neural networks have been applied to tackle many-body electron correlations for small molecules and physical models in recent years. Here we propose an architecture that extends molecular neural networks with the inclusion of periodic boundary conditions to enable ab initio calculation of real solids. The accuracy of our approach is demonstrated in four different types of systems, namely the one-dimensional periodic hydrogen chain, the two-dimensional graphene, the three-dimensional lithium hydride crystal, and the homogeneous electron gas, where the obtained results, e.g. total energies, dissociation curves, and cohesive energies, reach a competitive level with many traditional ab initio methods. Moreover, electron densities of typical systems are also calculated to provide physical intuition of various solids. Our method of extending a molecular neural network to periodic systems can be easily integrated into other neural network structures, highlighting a promising future of ab initio solution of more complex solid systems using neural network ansatz, and more generally endorsing the application of machine learning in materials simulation and condensed matter physics.Solving the many-body electronic structure of real solids is a grand challenge in condensed matter physics and materials science. Here authors present a machine learning ab initio architecture for real solids, which combines molecular neural network wavefunction ansatz and periodic features, providing accurate solutions for a range of solids.
Neural networks have been applied to tackle many-body electron correlations for small molecules and physical models in recent years. Here we propose an architecture that extends molecular neural networks with the inclusion of periodic boundary conditions to enable ab initio calculation of real solids. The accuracy of our approach is demonstrated in four different types of systems, namely the one-dimensional periodic hydrogen chain, the two-dimensional graphene, the three-dimensional lithium hydride crystal, and the homogeneous electron gas, where the obtained results, e.g. total energies, dissociation curves, and cohesive energies, reach a competitive level with many traditional ab initio methods. Moreover, electron densities of typical systems are also calculated to provide physical intuition of various solids. Our method of extending a molecular neural network to periodic systems can be easily integrated into other neural network structures, highlighting a promising future of ab initio solution of more complex solid systems using neural network ansatz, and more generally endorsing the application of machine learning in materials simulation and condensed matter physics.
ArticleNumber 7895
Author Li, Zhe
Li, Xiang
Chen, Ji
Author_xml – sequence: 1
  givenname: Xiang
  orcidid: 0000-0001-8572-1875
  surname: Li
  fullname: Li, Xiang
  email: lixiang.62770689@bytedance.com
  organization: ByteDance Inc
– sequence: 2
  givenname: Zhe
  orcidid: 0000-0002-2493-9229
  surname: Li
  fullname: Li, Zhe
  organization: ByteDance Inc
– sequence: 3
  givenname: Ji
  orcidid: 0000-0003-1603-1963
  surname: Chen
  fullname: Chen, Ji
  organization: School of Physics, Interdisciplinary Institute of Light-Element Quantum Materials, Frontiers Science Center for Nano-Optoelectronics, Peking University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36550157$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1PHSEUJY1N_ah_oItmkm7cTL18DDAbE2OsNTFx064JA8wrrzywMKNpf33xjbXqQjbcXM45917u2Uc7MUWH0AcMnzFQeVwYZly0QEhLO05Ei9-gPQIMt1gQuvMk3kWHpayhHtpjydg7tEt51wHuxB46OR0aH_3kU2N0MHPQNYxNGpvsdGhKCt6W5tbrJro510x0013KPxsdi57-vEdvRx2KO3y4D9D3L-ffzr62V9cXl2enV63pGExtz4SxjFsBEkYJlOuh5wY4w3zEHAYKI8MdcXQQhjtj8GjtqLE1wkiq7UAP0OWia5Neq5vsNzr_Vkl7tU2kvFI6T94EpzqriWNm5IQzRjAfuGRYG6yhpxScqFoni9bNPGycNS5OdbBnos9fov-hVulW9UICYbQKHD0I5PRrdmVSG1-MC0FHl-aiiOgk9LLWrdBPL6DrNOdYv-oexSWnlPKK-vi0o8dW_q2pAsgCMDmVkt34CMGg7u2gFjuoage1tYPClSRfkIyftuutU_nwOpUu1FLrxJXL_9t-hfUX2jfH7Q
CitedBy_id crossref_primary_10_1109_LMWT_2024_3391214
crossref_primary_10_1016_j_jcp_2024_113351
crossref_primary_10_1103_PhysRevLett_132_266501
crossref_primary_10_1063_5_0139024
crossref_primary_10_1088_1361_6633_ad7d33
crossref_primary_10_1103_PhysRevB_107_205119
crossref_primary_10_1021_acs_jctc_4c01703
crossref_primary_10_1038_s41467_023_37609_3
crossref_primary_10_1088_2632_2153_ad1f75
crossref_primary_10_1360_SSPMA_2024_0030
crossref_primary_10_1039_D4FD00071D
crossref_primary_10_1016_j_jcp_2024_113140
crossref_primary_10_1038_s41524_024_01406_3
crossref_primary_10_1038_s41570_023_00516_8
crossref_primary_10_1103_PhysRevX_14_021030
crossref_primary_10_1126_science_adn0137
crossref_primary_10_1038_s41467_023_44216_9
crossref_primary_10_1002_mgea_16
crossref_primary_10_1103_PhysRevLett_132_176401
crossref_primary_10_1039_D4CP01442A
crossref_primary_10_1002_wcms_70015
crossref_primary_10_1021_acs_jctc_4c00567
crossref_primary_10_1038_s43588_024_00730_4
crossref_primary_10_1038_s42256_024_00794_x
crossref_primary_10_1103_PhysRevB_107_235139
crossref_primary_10_1103_PhysRevLett_131_126501
crossref_primary_10_1103_PhysRevB_110_035108
crossref_primary_10_1103_PhysRevB_109_144426
Cites_doi 10.1103/PhysRevLett.80.4558
10.1103/PhysRevB.100.245142
10.1021/acs.jctc.7b01257
10.1002/wcms.1340
10.1038/s41557-020-0544-y
10.1063/5.0031024
10.1103/PhysRevB.80.165109
10.1103/RevModPhys.73.33
10.1103/PhysRevE.74.066701
10.1103/RevModPhys.87.897
10.1021/acs.jctc.9b00962
10.1103/PhysRevB.54.8393
10.1016/0378-4371(89)90114-3
10.1103/PhysRevResearch.4.013021
10.1103/PhysRevLett.45.566
10.1126/science.aag2302
10.1103/PhysRevB.94.245108
10.1103/PhysRevResearch.3.033072
10.1103/PhysRevB.51.10591
10.1103/PhysRevLett.97.076404
10.1126/science.aah5975
10.1103/PhysRevResearch.2.033429
10.1103/PhysRevB.84.245117
10.1103/PhysRevB.103.075138
10.1088/0953-8984/21/8/084204
10.1016/j.jcp.2019.108929
10.1103/RevModPhys.83.851
10.1126/science.abj6511
10.1103/PhysRevB.82.165431
10.1063/5.0005754
10.1103/RevModPhys.71.1253
10.1103/PhysRevE.64.016702
10.1038/s42005-021-00609-0
10.1103/PhysRevB.94.035157
10.1038/nature11770
10.1038/s41467-023-37609-3
10.1103/PhysRevLett.130.036401
10.1103/PhysRevB.107.235139
10.1103/PhysRevB.73.235124
10.1017/CBO9780511805769
10.1038/s41467-020-15724-9
10.1063/5.0139024
10.1038/s43588-021-00165-1
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-022-35627-1
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Publicly Available Content Database
CrossRef
PubMed

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Physics
EISSN 2041-1723
EndPage 9
ExternalDocumentID oai_doaj_org_article_5da2e4cf62644216b6841ac1a09330e7
PMC9780243
36550157
10_1038_s41467_022_35627_1
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 92165101
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 92165101
– fundername: ;
  grantid: 92165101
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c540t-947cd46d7080f8036ab96c06416f160b30f4152e3b7c6ecc1fddfa1dc7c83adb3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:12:36 EDT 2025
Thu Aug 21 18:40:40 EDT 2025
Fri Jul 11 10:47:06 EDT 2025
Wed Aug 13 08:05:40 EDT 2025
Wed Feb 19 02:12:56 EST 2025
Tue Jul 01 00:58:36 EDT 2025
Thu Apr 24 23:01:24 EDT 2025
Fri Feb 21 02:38:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-947cd46d7080f8036ab96c06416f160b30f4152e3b7c6ecc1fddfa1dc7c83adb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2493-9229
0000-0001-8572-1875
0000-0003-1603-1963
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-35627-1
PMID 36550157
PQID 2756863336
PQPubID 546298
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_5da2e4cf62644216b6841ac1a09330e7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9780243
proquest_miscellaneous_2758098684
proquest_journals_2756863336
pubmed_primary_36550157
crossref_primary_10_1038_s41467_022_35627_1
crossref_citationtrail_10_1038_s41467_022_35627_1
springer_journals_10_1038_s41467_022_35627_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-22
PublicationDateYYYYMMDD 2022-12-22
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-22
  day: 22
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References López Ríos, Ma, Drummond, Towler, Needs (CR33) 2006; 74
Williams (CR5) 2020; 10
Sun (CR50) 2018; 8
Kohn (CR1) 1999; 71
Tang, Sanville, Henkelman (CR40) 2009; 21
Foulkes, Mitas, Needs, Rajagopal (CR18) 2001; 73
Sugiyama, Zerah, Alder (CR42) 1989; 156
CR2
Medvedev, Bushmarinov, Sun, Perdew, Lyssenko (CR36) 2017; 355
Annaberdiyev, Melton, Bennett, Wang, Mitas (CR39) 2020; 16
Dagrada, Karakuzu, Vildosola, Casula, Sorella (CR43) 2016; 94
Azadi, Foulkes (CR44) 2019; 100
CR7
CR49
CR48
CR47
Luo, Alavi (CR35) 2018; 14
Yoshioka, Mizukami, Nori (CR14) 2021; 4
Rajagopal, Needs, James, Kenny, Foulkes (CR45) 1995; 51
Shi, Zhang (CR19) 2021; 154
Chiesa, Ceperley, Martin, Holzmann (CR28) 2006; 97
Stella, Attaccalite, Sorella, Rubio (CR37) 2011; 84
Carleo, Troyer (CR9) 2017; 355
Guther (CR17) 2020; 153
CR16
Geim (CR26) 2011; 83
CR13
CR11
Nolan, Gillan, Alfè, Allan, Manby (CR30) 2009; 80
Han, Zhang, Weinan (CR8) 2019; 399
Hermann, Schätzle, Noé (CR12) 2020; 12
Binnie (CR31) 2010; 82
Booth, Grüneis, Kresse, Alavi (CR6) 2013; 493
Chen, Motta, Ma, Zhang (CR38) 2021; 103
CR29
Sorella (CR46) 1998; 80
Lin, Zong, Ceperley (CR27) 2001; 64
Liao, Schraivogel, Luo, Kats, Alavi (CR34) 2021; 3
Motta (CR25) 2017; 7
Whitehead, Michael, Conduit (CR20) 2016; 94
CR24
CR23
CR22
Yao, Xu, Wang (CR41) 1996; 54
Jones (CR3) 2015; 87
CR21
Pfau, Spencer, Alexander, Matthews, Foulkes (CR10) 2020; 2
Li, Fan, Ren, Chen (CR15) 2022; 4
Kirkpatrick (CR4) 2021; 374
Ceperley, Alder (CR32) 1980; 45
35627_CR16
P López Ríos (35627_CR33) 2006; 74
X Li (35627_CR15) 2022; 4
N Yoshioka (35627_CR14) 2021; 4
A Annaberdiyev (35627_CR39) 2020; 16
D Pfau (35627_CR10) 2020; 2
35627_CR11
G Rajagopal (35627_CR45) 1995; 51
35627_CR13
TM Whitehead (35627_CR20) 2016; 94
G Yao (35627_CR41) 1996; 54
G Sugiyama (35627_CR42) 1989; 156
KT Williams (35627_CR5) 2020; 10
35627_CR7
H Shi (35627_CR19) 2021; 154
M Motta (35627_CR25) 2017; 7
35627_CR47
35627_CR48
35627_CR49
J Hermann (35627_CR12) 2020; 12
S Sorella (35627_CR46) 1998; 80
SJ Binnie (35627_CR31) 2010; 82
DM Ceperley (35627_CR32) 1980; 45
Q Sun (35627_CR50) 2018; 8
MG Medvedev (35627_CR36) 2017; 355
W Kohn (35627_CR1) 1999; 71
K Liao (35627_CR34) 2021; 3
AK Geim (35627_CR26) 2011; 83
J Han (35627_CR8) 2019; 399
RO Jones (35627_CR3) 2015; 87
C Lin (35627_CR27) 2001; 64
SJ Nolan (35627_CR30) 2009; 80
S Azadi (35627_CR44) 2019; 100
H Luo (35627_CR35) 2018; 14
WMC Foulkes (35627_CR18) 2001; 73
K Guther (35627_CR17) 2020; 153
GH Booth (35627_CR6) 2013; 493
35627_CR29
S Chen (35627_CR38) 2021; 103
J Kirkpatrick (35627_CR4) 2021; 374
G Carleo (35627_CR9) 2017; 355
S Chiesa (35627_CR28) 2006; 97
35627_CR2
35627_CR21
35627_CR22
35627_CR23
35627_CR24
M Dagrada (35627_CR43) 2016; 94
W Tang (35627_CR40) 2009; 21
L Stella (35627_CR37) 2011; 84
References_xml – ident: CR22
– volume: 80
  start-page: 4558
  year: 1998
  end-page: 4561
  ident: CR46
  article-title: Green function monte carlo with stochastic reconfiguration
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.4558
– ident: CR49
– volume: 100
  start-page: 245142
  year: 2019
  ident: CR44
  article-title: Efficient method for grand-canonical twist averaging in quantum monte carlo calculations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.100.245142
– volume: 14
  start-page: 1403
  year: 2018
  end-page: 1411
  ident: CR35
  article-title: Combining the transcorrelated method with full configuration interaction quantum monte carlo: Application to the homogeneous electron gas
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.7b01257
– ident: CR16
– ident: CR29
– volume: 8
  start-page: e1340
  year: 2018
  ident: CR50
  article-title: Pyscf: the python-based simulations of chemistry framework
  publication-title: WIREs Comput. Mol. Sci.
  doi: 10.1002/wcms.1340
– volume: 12
  start-page: 891
  year: 2020
  end-page: 897
  ident: CR12
  article-title: Deep-neural-network solution of the electronic Schrödinger equation
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-020-0544-y
– volume: 154
  start-page: 024107
  year: 2021
  ident: CR19
  article-title: Some recent developments in auxiliary-field quantum monte carlo for real materials
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0031024
– volume: 80
  start-page: 165109
  year: 2009
  ident: CR30
  article-title: Calculation of properties of crystalline lithium hydride using correlated wave function theory
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.165109
– volume: 73
  start-page: 33
  year: 2001
  ident: CR18
  article-title: Quantum monte carlo simulations of solids
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.73.33
– ident: CR21
– volume: 74
  start-page: 066701
  year: 2006
  ident: CR33
  article-title: Inhomogeneous backflow transformations in quantum monte carlo calculations
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.74.066701
– volume: 87
  start-page: 897
  year: 2015
  end-page: 923
  ident: CR3
  article-title: Density functional theory: Its origins, rise to prominence, and future
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.87.897
– volume: 16
  start-page: 1482
  year: 2020
  end-page: 1502
  ident: CR39
  article-title: Accurate atomic correlation and total energies for correlation consistent effective core potentials
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.9b00962
– volume: 10
  start-page: 011041
  year: 2020
  ident: CR5
  article-title: Direct comparison of many-body methods for realistic electronic Hamiltonians
  publication-title: Phys. Rev. X
– volume: 54
  start-page: 8393
  year: 1996
  end-page: 8397
  ident: CR41
  article-title: Pseudopotential variational quantum monte carlo approach to bcc lithium
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.8393
– volume: 156
  start-page: 144
  year: 1989
  end-page: 168
  ident: CR42
  article-title: Ground-state properties of metallic lithium
  publication-title: Phys. A Stat. Mech. Appl.
  doi: 10.1016/0378-4371(89)90114-3
– ident: CR11
– volume: 4
  start-page: 013021
  year: 2022
  ident: CR15
  article-title: Fermionic neural network with effective core potential
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.4.013021
– volume: 45
  start-page: 566
  year: 1980
  end-page: 569
  ident: CR32
  article-title: Ground state of the electron gas by a stochastic method
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.45.566
– volume: 355
  start-page: 602
  year: 2017
  end-page: 606
  ident: CR9
  article-title: Solving the quantum many-body problem with artificial neural networks
  publication-title: Science
  doi: 10.1126/science.aag2302
– volume: 94
  start-page: 245108
  year: 2016
  ident: CR43
  article-title: Exact special twist method for quantum monte carlo simulations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.245108
– volume: 3
  start-page: 033072
  year: 2021
  ident: CR34
  article-title: Towards efficient and accurate ab initio solutions to periodic systems via transcorrelation and coupled cluster theory
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.3.033072
– ident: CR47
– volume: 51
  start-page: 10591
  year: 1995
  end-page: 10600
  ident: CR45
  article-title: Variational and diffusion quantum monte carlo calculations at nonzero wave vectors: theory and application to diamond-structure germanium
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.51.10591
– volume: 97
  start-page: 076404
  year: 2006
  ident: CR28
  article-title: Finite-size error in many-body simulations with long-range interactions
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.076404
– ident: CR2
– volume: 355
  start-page: 49
  year: 2017
  end-page: 52
  ident: CR36
  article-title: Density functional theory is straying from the path toward the exact functional
  publication-title: Science
  doi: 10.1126/science.aah5975
– volume: 2
  start-page: 033429
  year: 2020
  ident: CR10
  article-title: Ab initio solution of the many-electron schrödinger equation with deep neural networks
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.033429
– volume: 84
  start-page: 245117
  year: 2011
  ident: CR37
  article-title: Strong electronic correlation in the hydrogen chain: a variational monte carlo study
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.245117
– volume: 103
  start-page: 075138
  year: 2021
  ident: CR38
  article-title: Ab initio electronic density in solids by many-body plane-wave auxiliary-field quantum monte carlo calculations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.103.075138
– volume: 21
  start-page: 084204
  year: 2009
  ident: CR40
  article-title: A grid-based bader analysis algorithm without lattice bias
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/21/8/084204
– volume: 399
  start-page: 108929
  year: 2019
  ident: CR8
  article-title: Solving many-electron Schrödinger equation using deep neural networks
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.108929
– volume: 83
  start-page: 851
  year: 2011
  end-page: 862
  ident: CR26
  article-title: Nobel lecture: random walk to graphene
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.83.851
– ident: CR23
– volume: 374
  start-page: 1385
  year: 2021
  end-page: 1389
  ident: CR4
  article-title: Pushing the frontiers of density functionals by solving the fractional electron problem
  publication-title: Science
  doi: 10.1126/science.abj6511
– volume: 82
  start-page: 165431
  year: 2010
  ident: CR31
  article-title: Bulk and surface energetics of crystalline lithium hydride: benchmarks from quantum monte carlo and quantum chemistry
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.165431
– ident: CR48
– volume: 153
  start-page: 034107
  year: 2020
  ident: CR17
  article-title: NECI: N-electron configuration interaction with an emphasis on state-of-the-art stochastic methods
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0005754
– volume: 71
  start-page: 1253
  year: 1999
  end-page: 1266
  ident: CR1
  article-title: Nobel lecture: electronic structure of matter—wave functions and density functionals
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.71.1253
– volume: 64
  start-page: 016702
  year: 2001
  ident: CR27
  article-title: Twist-averaged boundary conditions in continuum quantum monte carlo algorithms
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.64.016702
– volume: 4
  start-page: 1
  year: 2021
  end-page: 8
  ident: CR14
  article-title: Solving quasiparticle band spectra of real solids using neural-network quantum states
  publication-title: Commun. Phys.
  doi: 10.1038/s42005-021-00609-0
– ident: CR13
– volume: 94
  start-page: 035157
  year: 2016
  ident: CR20
  article-title: Jastrow correlation factor for periodic systems
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.035157
– ident: CR7
– volume: 493
  start-page: 365
  year: 2013
  end-page: 370
  ident: CR6
  article-title: Towards an exact description of electronic wavefunctions in real solids
  publication-title: Nature
  doi: 10.1038/nature11770
– ident: CR24
– volume: 7
  start-page: 031059
  year: 2017
  ident: CR25
  article-title: Towards the solution of the many-electron problem in real materials: equation of state of the hydrogen chain with state-of-the-art many-body methods
  publication-title: Phys. Rev. X
– volume: 54
  start-page: 8393
  year: 1996
  ident: 35627_CR41
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.8393
– volume: 87
  start-page: 897
  year: 2015
  ident: 35627_CR3
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.87.897
– ident: 35627_CR23
– volume: 10
  start-page: 011041
  year: 2020
  ident: 35627_CR5
  publication-title: Phys. Rev. X
– volume: 64
  start-page: 016702
  year: 2001
  ident: 35627_CR27
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.64.016702
– volume: 4
  start-page: 1
  year: 2021
  ident: 35627_CR14
  publication-title: Commun. Phys.
  doi: 10.1038/s42005-021-00609-0
– volume: 51
  start-page: 10591
  year: 1995
  ident: 35627_CR45
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.51.10591
– volume: 7
  start-page: 031059
  year: 2017
  ident: 35627_CR25
  publication-title: Phys. Rev. X
– volume: 80
  start-page: 165109
  year: 2009
  ident: 35627_CR30
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.165109
– volume: 12
  start-page: 891
  year: 2020
  ident: 35627_CR12
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-020-0544-y
– volume: 94
  start-page: 245108
  year: 2016
  ident: 35627_CR43
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.245108
– volume: 399
  start-page: 108929
  year: 2019
  ident: 35627_CR8
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.108929
– ident: 35627_CR47
– volume: 493
  start-page: 365
  year: 2013
  ident: 35627_CR6
  publication-title: Nature
  doi: 10.1038/nature11770
– volume: 153
  start-page: 034107
  year: 2020
  ident: 35627_CR17
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0005754
– volume: 21
  start-page: 084204
  year: 2009
  ident: 35627_CR40
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/21/8/084204
– volume: 94
  start-page: 035157
  year: 2016
  ident: 35627_CR20
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.035157
– volume: 103
  start-page: 075138
  year: 2021
  ident: 35627_CR38
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.103.075138
– volume: 156
  start-page: 144
  year: 1989
  ident: 35627_CR42
  publication-title: Phys. A Stat. Mech. Appl.
  doi: 10.1016/0378-4371(89)90114-3
– ident: 35627_CR16
  doi: 10.1038/s41467-023-37609-3
– volume: 82
  start-page: 165431
  year: 2010
  ident: 35627_CR31
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.165431
– ident: 35627_CR22
  doi: 10.1103/PhysRevLett.130.036401
– ident: 35627_CR21
  doi: 10.1103/PhysRevB.107.235139
– volume: 14
  start-page: 1403
  year: 2018
  ident: 35627_CR35
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.7b01257
– ident: 35627_CR11
– volume: 3
  start-page: 033072
  year: 2021
  ident: 35627_CR34
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.3.033072
– ident: 35627_CR29
  doi: 10.1103/PhysRevB.73.235124
– volume: 73
  start-page: 33
  year: 2001
  ident: 35627_CR18
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.73.33
– ident: 35627_CR2
  doi: 10.1017/CBO9780511805769
– volume: 97
  start-page: 076404
  year: 2006
  ident: 35627_CR28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.076404
– volume: 45
  start-page: 566
  year: 1980
  ident: 35627_CR32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.45.566
– volume: 80
  start-page: 4558
  year: 1998
  ident: 35627_CR46
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.4558
– ident: 35627_CR24
– volume: 84
  start-page: 245117
  year: 2011
  ident: 35627_CR37
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.245117
– volume: 374
  start-page: 1385
  year: 2021
  ident: 35627_CR4
  publication-title: Science
  doi: 10.1126/science.abj6511
– volume: 16
  start-page: 1482
  year: 2020
  ident: 35627_CR39
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.9b00962
– volume: 100
  start-page: 245142
  year: 2019
  ident: 35627_CR44
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.100.245142
– ident: 35627_CR13
  doi: 10.1038/s41467-020-15724-9
– ident: 35627_CR48
  doi: 10.1063/5.0139024
– volume: 4
  start-page: 013021
  year: 2022
  ident: 35627_CR15
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.4.013021
– volume: 154
  start-page: 024107
  year: 2021
  ident: 35627_CR19
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0031024
– volume: 8
  start-page: e1340
  year: 2018
  ident: 35627_CR50
  publication-title: WIREs Comput. Mol. Sci.
  doi: 10.1002/wcms.1340
– ident: 35627_CR7
  doi: 10.1038/s43588-021-00165-1
– volume: 355
  start-page: 49
  year: 2017
  ident: 35627_CR36
  publication-title: Science
  doi: 10.1126/science.aah5975
– volume: 355
  start-page: 602
  year: 2017
  ident: 35627_CR9
  publication-title: Science
  doi: 10.1126/science.aag2302
– ident: 35627_CR49
– volume: 71
  start-page: 1253
  year: 1999
  ident: 35627_CR1
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.71.1253
– volume: 2
  start-page: 033429
  year: 2020
  ident: 35627_CR10
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.033429
– volume: 83
  start-page: 851
  year: 2011
  ident: 35627_CR26
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.83.851
– volume: 74
  start-page: 066701
  year: 2006
  ident: 35627_CR33
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.74.066701
SSID ssj0000391844
Score 2.6226103
Snippet Neural networks have been applied to tackle many-body electron correlations for small molecules and physical models in recent years. Here we propose an...
Solving the many-body electronic structure of real solids is a grand challenge in condensed matter physics and materials science. Here authors present a...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7895
SubjectTerms 639/766/119
639/766/94
Boundary conditions
Condensed matter physics
Electron gas
Electronic structure
Graphene
Humanities and Social Sciences
Learning algorithms
Lithium
Lithium hydrides
Machine learning
Materials science
Molecular modelling
multidisciplinary
Neural networks
Physics
Science
Science (multidisciplinary)
Solids
Wave functions
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEB-kIHgRv12tEsGbhm4-djZ7EdpiKR48Wegt5GvxQdknvleh_eudJPuefX5evG6yYfjNJDNDJr8BeG06dMkb5EGg4Toq5A5N4tKJlFwaTedKtcVHPD3TH8678xutvnJNWKUHrsAddNHJpMOI2XNLgR6NFi4IV1LxVN6Rk8-7kUyVM1gNlLro-ZVMq8zBSpczoRavo-y52PFEhbD_d1Hmr8WSP92YFkd0cg_uzhEkO6yS34dbaXoAt2tPyauH8O7Qs0WuCFoygj_M3bnYcmQUHl4wMrVFXLFvC8cylSV9mWohOMt9w9fXj-Ds5P2n41M-N0nggYKtNR90H6LG2FPoNxryR84PGCjQEDgKbL1qx-yjk_J9QNKXGGMcnYihD0a56NVj2JuWU3oKrOt86gbfOklxRfKDj21wsm_TQCm0iaEBsQHMhplBPDeyuLDlJlsZW0G2BLItIFvRwJvtP18qf8ZfZx9lPWxnZu7r8oEsws4WYf9lEQ3sb7Ro5w25spnl3qBSCht4tR2mrZTvR9yUlpdljmkHQ8s18KQqfSuJQkrlREeL9zvmsCPq7si0-FzoujPHk9Sqgbcbw_kh1p-hePY_oHgOd2S2eCG5lPuwt_56mV5QELX2L8t--Q70ZBWP
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxA6vxIxPnAiqIpeLAiUq9WX4FVqqS0myR4Nczdryplkdvke1YzszY89mefEPIS92AjU4D8xw0U0ECs6AjE5bHaGOvG5ujLT7D0bH6dNKclAO3qYRVbtfEvFCH0acz8oNEU65BSglvz76zlDUq3a6WFBrXyQ2OniaFdOnVx-WMJbGfa6XKvzK11AeTyivDHMIOomV8xx9l2v5_Yc2_Qyb_uDfN7mh1h9wuOJIezoq_S67F4R65OWeW_IlPObLTT_fJm0NH1ylCaKSoDl-yddGxpwgXTyma3jpM9Mfa0kRtiSXDHBhOUx7xza8H5Hj14cv7I1aSJjCP4GvDOtX6oCC0CAV7jf7Jug48Ag8OPYfaybpPPjtK13pA_fE-hN7y4FuvpQ1OPiR7wzjEx4Q2jYtN52orEGdE17lQeyvaOna4pdbBV4RvRWd8YRRPiS1OTb7ZltrM4jYobpPFbXhFXi3vnM18Gle2fpc0srRMXNi5YDz_asrUMk2wIirfQ8J2goMDrbj13ObDmthWZH-rT1Mm6GQuzakiL5ZqnFrpvsQOcbzIbXTdaeyuIo9m9S8jkYBbO95g5-2OYewMdbdmWH_L9N2J80koWZHXWxO6HNb_RfHk6q94Sm6JZNVcMCH2yd7m_CI-Q7i0cc_znPgNfiMQ4A
  priority: 102
  providerName: ProQuest
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ji9VAEC6GGQQv4m50lBa8aTC9pNK5CE9xGN7Biw7Mrekt-mBIZN4bQX-91Z1Fno6C195oakl9na7-CuCFrtFGp7H0HHWpgsTSoo6lsDxGGztd25xt8QFPz9T6vD4_ADG_hclJ-5nSMn-m5-yw11uVXXrMPUfRlHTiOUpU7WTbR6vV-uN6-bOSOM-1UtMLmUrqaybvRaFM1n8dwvwzUfK329IchE5uw60JPbLVuN87cBD7u3BjrCf5_R68WTm2SdlAAyPR-6kyFxs6RtDwgpGZbcKWfdtYlmgsqaUfk8BZqhm--3Efzk7ef3p3Wk4FEkpPQGtXtqrxQWFoCPZ1mmKRdS16AhkcO46Vk1WX4nOUrvFIuuJdCJ3lwTdeSxucfACH_dDHR8Dq2sW6dZUVhCmia12ovBVNFVs6PuvgC-CzwIyf2MNTEYsLk2-xpTajkA0J2WQhG17Ay2XO15E745-j3yY9LCMT73VuGC4_m8kOTB2siMp3mHCc4OhQK249t_nHTGwKOJ61aCZn3JrEcK9RSokFPF-6yY3S3Yjt43CVx-iq1bRcAQ9HpS87kUjHOF7T4s2eOextdb-n33zJVN2J30koWcCr2XB-bevvonj8f8OfwE2RbJuLUohjONxdXsWnBJV27tnkGz8B1hYM-A
  priority: 102
  providerName: Springer Nature
Title Ab initio calculation of real solids via neural network ansatz
URI https://link.springer.com/article/10.1038/s41467-022-35627-1
https://www.ncbi.nlm.nih.gov/pubmed/36550157
https://www.proquest.com/docview/2756863336
https://www.proquest.com/docview/2758098684
https://pubmed.ncbi.nlm.nih.gov/PMC9780243
https://doaj.org/article/5da2e4cf62644216b6841ac1a09330e7
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-NTaC9ID5HYFRB4g0CsZ3YzgOgrlqZKjEhoFLfIn8FKlUJtB1i_PWcnaRQ6HhJJH9E1n3kfmef7wCeypwrpyVPDOEyySzjieLSJVQR55SrZK5CtMU5P5tmk1k-24O-3FFHwNVO187Xk5ouFy9-fLt8gwr_qr0yLl-usqDubVw6pyJBb-gALZPwFQ3edXA__JlZgQ5N1t2d2T31EG4wjrCdeIP1h6kKGf13wdB_oyn_OlINlmp8C252EDMetjJxG_ZcfQeut0UnL-_C66GO5z5kqImRP6Yr3xU3VYz4cRGjLM7tKv4-V7HPdYktdRspHvvC4uuf92A6Pv00Oku6KgqJQTS2TopMGJtxKxAbVhINltIFN4hECK8ITzVLK2_EHdPCcGQoqaytFLFGGMmU1ew-7NdN7R5AnOfa5YVOFUXg4XShbWoUFakr0MeW1kRAeoKVpksx7itdLMpw1M1k2dK7RHqXgd4lieDZZs7XNsHGf0efeD5sRvrk2KGhWX4uO10rc6uoy0zFPdijhGsuM6IMUWH3xokIjnsulr3AlT4NvuSMMR7Bk0036po_QFG1ay7CGJkWEj8XwVHL9M1KeqGJQGyJw9ZSt3vq-ZeQz9sngaIZi-B5Lzi_l3U1KR5euYRHcEi9RBOaUHoM--vlhXuM0GmtB3BNzAQ-5fjtAA6Gw8nHCb5PTs_ff8DWER8NwqbEIOjNLzWCF5k
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw1CpFCC6InUABI8EJrMZLHOcAqCzDlJaeWqk311tgpCopzRRUPopv5NlJphqW3nqLbMey326_5_cQeqYKaYJVkjgqFRGeS2KkCoQZGoIJtSpMirbYkdM98Wm_2F9Bv8a3MDGscpSJSVD71sU78vWYplxJzrl8c_SNxKpR0bs6ltDoyWIrnP6AI1v3avM94Pc5Y5MPu--mZKgqQBxYJ3NSidJ5IX0JtlKtQIAbW0kHmpnKmsrc8ryOSi1wWzoJG6S197Wh3pVOceMth3kvocuCgyaPL9MnHxd3OjHbuhJieJuTc7XeiSSJ-pB5yUpCl_RfKhPwL9v27xDNP_y0Sf1NbqDrg92KN3pCu4lWQnMLXekrWZ7CV4okdd1t9HrD4lmMSGoxoN8N1cFwW2MwTw8xkPrMd_j7zOCYShNamj4QHce65fOfd9DehYDzLlpt2ibcR7gobCgqmxsGdk2wlfW5M6zMQwVHeOVdhugIOu2GDOaxkMahTp50rnQPbg3g1gncmmboxeKfoz5_x7mj30aMLEbG3NupoT3-ogdW1oU3LAhXy2hLMiqtVIIaR026HAplhtZGfOpBIHT6jHwz9HTRDawc_TOmCe1JGqPySsF0GbrXo3-xEi7hKEkLmLxcIoylpS73NLOvKV14zDHFBM_Qy5GEzpb1f1A8OH8XT9DV6e7nbb29ubP1EF1jkcIpI4ytodX58Ul4BKba3D5O_IHRwUUz5G-1CE6M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFS2AnFBvAkUMBKcINrYThznAKilrVqKVhWiUm_Gr8BKVVK6W1D5NL6OsZNstTx66y2yHcuel2c84xmA57IQ2hspUkuFTHPHRaqF9CnT1Hvta1noGG0xETsH-fvD4nAFfg1vYUJY5SATo6B2rQ135OOQplwKzrkY131YxP7m9tvjb2moIBU8rUM5jY5E9vzZDzTfZq93NxHXLxjb3vr0biftKwykFjWVeVrlpXW5cCXqTbVEYa5NJSye0lTUVGSGZ3U44Dw3pRW4WVo7V2vqbGkl185wnPcKrJbBKhrB6sbWZP_j4oYn5F6Xed6_1Mm4HM_yKJe6AHrBypQunYaxaMC_NN2_Azb_8NrGw3D7JtzotViy3pHdLVjxzW242tW1PMOvGFdqZ3fgzboh0xCf1BIkBtvXCiNtTVBZPSJI-FM3I9-nmoTEmtjSdGHpJFQxn_-8CweXAtB7MGraxj8AUhTGF5XJNEMtx5vKuMxqVma-QoNeOpsAHUCnbJ_PPJTVOFLRr86l6sCtENwqglvRBF4u_jnusnlcOHojYGQxMmTijg3tyRfVM7YqnGY-t7UImiWjwgiZU22pjldFvkxgbcCn6sXDTJ0TcwLPFt3I2MFboxvfnsYxMqskTpfA_Q79i5VwgYYlLXDycokwlpa63NNMv8bk4SHjFMt5Aq8GEjpf1v9B8fDiXTyFa8iM6sPuZO8RXGeBwClLGVuD0fzk1D9GvW1unvQMQuDzZfPkbwQJVB4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ab+initio+calculation+of+real+solids+via+neural+network+ansatz&rft.jtitle=Nature+communications&rft.au=Li%2C+Xiang&rft.au=Li%2C+Zhe&rft.au=Chen%2C+Ji&rft.date=2022-12-22&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft.spage=7895&rft_id=info:doi/10.1038%2Fs41467-022-35627-1&rft_id=info%3Apmid%2F36550157&rft.externalDocID=36550157
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon