Ab initio calculation of real solids via neural network ansatz
Neural networks have been applied to tackle many-body electron correlations for small molecules and physical models in recent years. Here we propose an architecture that extends molecular neural networks with the inclusion of periodic boundary conditions to enable ab initio calculation of real solid...
Saved in:
Published in | Nature communications Vol. 13; no. 1; pp. 7895 - 9 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
22.12.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Neural networks have been applied to tackle many-body electron correlations for small molecules and physical models in recent years. Here we propose an architecture that extends molecular neural networks with the inclusion of periodic boundary conditions to enable ab initio calculation of real solids. The accuracy of our approach is demonstrated in four different types of systems, namely the one-dimensional periodic hydrogen chain, the two-dimensional graphene, the three-dimensional lithium hydride crystal, and the homogeneous electron gas, where the obtained results, e.g. total energies, dissociation curves, and cohesive energies, reach a competitive level with many traditional ab initio methods. Moreover, electron densities of typical systems are also calculated to provide physical intuition of various solids. Our method of extending a molecular neural network to periodic systems can be easily integrated into other neural network structures, highlighting a promising future of ab initio solution of more complex solid systems using neural network ansatz, and more generally endorsing the application of machine learning in materials simulation and condensed matter physics.
Solving the many-body electronic structure of real solids is a grand challenge in condensed matter physics and materials science. Here authors present a machine learning ab initio architecture for real solids, which combines molecular neural network wavefunction ansatz and periodic features, providing accurate solutions for a range of solids. |
---|---|
AbstractList | Neural networks have been applied to tackle many-body electron correlations for small molecules and physical models in recent years. Here we propose an architecture that extends molecular neural networks with the inclusion of periodic boundary conditions to enable ab initio calculation of real solids. The accuracy of our approach is demonstrated in four different types of systems, namely the one-dimensional periodic hydrogen chain, the two-dimensional graphene, the three-dimensional lithium hydride crystal, and the homogeneous electron gas, where the obtained results, e.g. total energies, dissociation curves, and cohesive energies, reach a competitive level with many traditional ab initio methods. Moreover, electron densities of typical systems are also calculated to provide physical intuition of various solids. Our method of extending a molecular neural network to periodic systems can be easily integrated into other neural network structures, highlighting a promising future of ab initio solution of more complex solid systems using neural network ansatz, and more generally endorsing the application of machine learning in materials simulation and condensed matter physics.
Solving the many-body electronic structure of real solids is a grand challenge in condensed matter physics and materials science. Here authors present a machine learning ab initio architecture for real solids, which combines molecular neural network wavefunction ansatz and periodic features, providing accurate solutions for a range of solids. Solving the many-body electronic structure of real solids is a grand challenge in condensed matter physics and materials science. Here authors present a machine learning ab initio architecture for real solids, which combines molecular neural network wavefunction ansatz and periodic features, providing accurate solutions for a range of solids. Neural networks have been applied to tackle many-body electron correlations for small molecules and physical models in recent years. Here we propose an architecture that extends molecular neural networks with the inclusion of periodic boundary conditions to enable ab initio calculation of real solids. The accuracy of our approach is demonstrated in four different types of systems, namely the one-dimensional periodic hydrogen chain, the two-dimensional graphene, the three-dimensional lithium hydride crystal, and the homogeneous electron gas, where the obtained results, e.g. total energies, dissociation curves, and cohesive energies, reach a competitive level with many traditional ab initio methods. Moreover, electron densities of typical systems are also calculated to provide physical intuition of various solids. Our method of extending a molecular neural network to periodic systems can be easily integrated into other neural network structures, highlighting a promising future of ab initio solution of more complex solid systems using neural network ansatz, and more generally endorsing the application of machine learning in materials simulation and condensed matter physics.Neural networks have been applied to tackle many-body electron correlations for small molecules and physical models in recent years. Here we propose an architecture that extends molecular neural networks with the inclusion of periodic boundary conditions to enable ab initio calculation of real solids. The accuracy of our approach is demonstrated in four different types of systems, namely the one-dimensional periodic hydrogen chain, the two-dimensional graphene, the three-dimensional lithium hydride crystal, and the homogeneous electron gas, where the obtained results, e.g. total energies, dissociation curves, and cohesive energies, reach a competitive level with many traditional ab initio methods. Moreover, electron densities of typical systems are also calculated to provide physical intuition of various solids. Our method of extending a molecular neural network to periodic systems can be easily integrated into other neural network structures, highlighting a promising future of ab initio solution of more complex solid systems using neural network ansatz, and more generally endorsing the application of machine learning in materials simulation and condensed matter physics. Neural networks have been applied to tackle many-body electron correlations for small molecules and physical models in recent years. Here we propose an architecture that extends molecular neural networks with the inclusion of periodic boundary conditions to enable ab initio calculation of real solids. The accuracy of our approach is demonstrated in four different types of systems, namely the one-dimensional periodic hydrogen chain, the two-dimensional graphene, the three-dimensional lithium hydride crystal, and the homogeneous electron gas, where the obtained results, e.g. total energies, dissociation curves, and cohesive energies, reach a competitive level with many traditional ab initio methods. Moreover, electron densities of typical systems are also calculated to provide physical intuition of various solids. Our method of extending a molecular neural network to periodic systems can be easily integrated into other neural network structures, highlighting a promising future of ab initio solution of more complex solid systems using neural network ansatz, and more generally endorsing the application of machine learning in materials simulation and condensed matter physics.Solving the many-body electronic structure of real solids is a grand challenge in condensed matter physics and materials science. Here authors present a machine learning ab initio architecture for real solids, which combines molecular neural network wavefunction ansatz and periodic features, providing accurate solutions for a range of solids. Neural networks have been applied to tackle many-body electron correlations for small molecules and physical models in recent years. Here we propose an architecture that extends molecular neural networks with the inclusion of periodic boundary conditions to enable ab initio calculation of real solids. The accuracy of our approach is demonstrated in four different types of systems, namely the one-dimensional periodic hydrogen chain, the two-dimensional graphene, the three-dimensional lithium hydride crystal, and the homogeneous electron gas, where the obtained results, e.g. total energies, dissociation curves, and cohesive energies, reach a competitive level with many traditional ab initio methods. Moreover, electron densities of typical systems are also calculated to provide physical intuition of various solids. Our method of extending a molecular neural network to periodic systems can be easily integrated into other neural network structures, highlighting a promising future of ab initio solution of more complex solid systems using neural network ansatz, and more generally endorsing the application of machine learning in materials simulation and condensed matter physics. |
ArticleNumber | 7895 |
Author | Li, Zhe Li, Xiang Chen, Ji |
Author_xml | – sequence: 1 givenname: Xiang orcidid: 0000-0001-8572-1875 surname: Li fullname: Li, Xiang email: lixiang.62770689@bytedance.com organization: ByteDance Inc – sequence: 2 givenname: Zhe orcidid: 0000-0002-2493-9229 surname: Li fullname: Li, Zhe organization: ByteDance Inc – sequence: 3 givenname: Ji orcidid: 0000-0003-1603-1963 surname: Chen fullname: Chen, Ji organization: School of Physics, Interdisciplinary Institute of Light-Element Quantum Materials, Frontiers Science Center for Nano-Optoelectronics, Peking University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36550157$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1PHSEUJY1N_ah_oItmkm7cTL18DDAbE2OsNTFx064JA8wrrzywMKNpf33xjbXqQjbcXM45917u2Uc7MUWH0AcMnzFQeVwYZly0QEhLO05Ei9-gPQIMt1gQuvMk3kWHpayhHtpjydg7tEt51wHuxB46OR0aH_3kU2N0MHPQNYxNGpvsdGhKCt6W5tbrJro510x0013KPxsdi57-vEdvRx2KO3y4D9D3L-ffzr62V9cXl2enV63pGExtz4SxjFsBEkYJlOuh5wY4w3zEHAYKI8MdcXQQhjtj8GjtqLE1wkiq7UAP0OWia5Neq5vsNzr_Vkl7tU2kvFI6T94EpzqriWNm5IQzRjAfuGRYG6yhpxScqFoni9bNPGycNS5OdbBnos9fov-hVulW9UICYbQKHD0I5PRrdmVSG1-MC0FHl-aiiOgk9LLWrdBPL6DrNOdYv-oexSWnlPKK-vi0o8dW_q2pAsgCMDmVkt34CMGg7u2gFjuoage1tYPClSRfkIyftuutU_nwOpUu1FLrxJXL_9t-hfUX2jfH7Q |
CitedBy_id | crossref_primary_10_1109_LMWT_2024_3391214 crossref_primary_10_1016_j_jcp_2024_113351 crossref_primary_10_1103_PhysRevLett_132_266501 crossref_primary_10_1063_5_0139024 crossref_primary_10_1088_1361_6633_ad7d33 crossref_primary_10_1103_PhysRevB_107_205119 crossref_primary_10_1021_acs_jctc_4c01703 crossref_primary_10_1038_s41467_023_37609_3 crossref_primary_10_1088_2632_2153_ad1f75 crossref_primary_10_1360_SSPMA_2024_0030 crossref_primary_10_1039_D4FD00071D crossref_primary_10_1016_j_jcp_2024_113140 crossref_primary_10_1038_s41524_024_01406_3 crossref_primary_10_1038_s41570_023_00516_8 crossref_primary_10_1103_PhysRevX_14_021030 crossref_primary_10_1126_science_adn0137 crossref_primary_10_1038_s41467_023_44216_9 crossref_primary_10_1002_mgea_16 crossref_primary_10_1103_PhysRevLett_132_176401 crossref_primary_10_1039_D4CP01442A crossref_primary_10_1002_wcms_70015 crossref_primary_10_1021_acs_jctc_4c00567 crossref_primary_10_1038_s43588_024_00730_4 crossref_primary_10_1038_s42256_024_00794_x crossref_primary_10_1103_PhysRevB_107_235139 crossref_primary_10_1103_PhysRevLett_131_126501 crossref_primary_10_1103_PhysRevB_110_035108 crossref_primary_10_1103_PhysRevB_109_144426 |
Cites_doi | 10.1103/PhysRevLett.80.4558 10.1103/PhysRevB.100.245142 10.1021/acs.jctc.7b01257 10.1002/wcms.1340 10.1038/s41557-020-0544-y 10.1063/5.0031024 10.1103/PhysRevB.80.165109 10.1103/RevModPhys.73.33 10.1103/PhysRevE.74.066701 10.1103/RevModPhys.87.897 10.1021/acs.jctc.9b00962 10.1103/PhysRevB.54.8393 10.1016/0378-4371(89)90114-3 10.1103/PhysRevResearch.4.013021 10.1103/PhysRevLett.45.566 10.1126/science.aag2302 10.1103/PhysRevB.94.245108 10.1103/PhysRevResearch.3.033072 10.1103/PhysRevB.51.10591 10.1103/PhysRevLett.97.076404 10.1126/science.aah5975 10.1103/PhysRevResearch.2.033429 10.1103/PhysRevB.84.245117 10.1103/PhysRevB.103.075138 10.1088/0953-8984/21/8/084204 10.1016/j.jcp.2019.108929 10.1103/RevModPhys.83.851 10.1126/science.abj6511 10.1103/PhysRevB.82.165431 10.1063/5.0005754 10.1103/RevModPhys.71.1253 10.1103/PhysRevE.64.016702 10.1038/s42005-021-00609-0 10.1103/PhysRevB.94.035157 10.1038/nature11770 10.1038/s41467-023-37609-3 10.1103/PhysRevLett.130.036401 10.1103/PhysRevB.107.235139 10.1103/PhysRevB.73.235124 10.1017/CBO9780511805769 10.1038/s41467-020-15724-9 10.1063/5.0139024 10.1038/s43588-021-00165-1 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-022-35627-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Physics |
EISSN | 2041-1723 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_5da2e4cf62644216b6841ac1a09330e7 PMC9780243 36550157 10_1038_s41467_022_35627_1 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 92165101 funderid: https://doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 92165101 – fundername: ; grantid: 92165101 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-947cd46d7080f8036ab96c06416f160b30f4152e3b7c6ecc1fddfa1dc7c83adb3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:12:36 EDT 2025 Thu Aug 21 18:40:40 EDT 2025 Fri Jul 11 10:47:06 EDT 2025 Wed Aug 13 08:05:40 EDT 2025 Wed Feb 19 02:12:56 EST 2025 Tue Jul 01 00:58:36 EDT 2025 Thu Apr 24 23:01:24 EDT 2025 Fri Feb 21 02:38:40 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-947cd46d7080f8036ab96c06416f160b30f4152e3b7c6ecc1fddfa1dc7c83adb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2493-9229 0000-0001-8572-1875 0000-0003-1603-1963 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-35627-1 |
PMID | 36550157 |
PQID | 2756863336 |
PQPubID | 546298 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5da2e4cf62644216b6841ac1a09330e7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9780243 proquest_miscellaneous_2758098684 proquest_journals_2756863336 pubmed_primary_36550157 crossref_primary_10_1038_s41467_022_35627_1 crossref_citationtrail_10_1038_s41467_022_35627_1 springer_journals_10_1038_s41467_022_35627_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-22 |
PublicationDateYYYYMMDD | 2022-12-22 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | López Ríos, Ma, Drummond, Towler, Needs (CR33) 2006; 74 Williams (CR5) 2020; 10 Sun (CR50) 2018; 8 Kohn (CR1) 1999; 71 Tang, Sanville, Henkelman (CR40) 2009; 21 Foulkes, Mitas, Needs, Rajagopal (CR18) 2001; 73 Sugiyama, Zerah, Alder (CR42) 1989; 156 CR2 Medvedev, Bushmarinov, Sun, Perdew, Lyssenko (CR36) 2017; 355 Annaberdiyev, Melton, Bennett, Wang, Mitas (CR39) 2020; 16 Dagrada, Karakuzu, Vildosola, Casula, Sorella (CR43) 2016; 94 Azadi, Foulkes (CR44) 2019; 100 CR7 CR49 CR48 CR47 Luo, Alavi (CR35) 2018; 14 Yoshioka, Mizukami, Nori (CR14) 2021; 4 Rajagopal, Needs, James, Kenny, Foulkes (CR45) 1995; 51 Shi, Zhang (CR19) 2021; 154 Chiesa, Ceperley, Martin, Holzmann (CR28) 2006; 97 Stella, Attaccalite, Sorella, Rubio (CR37) 2011; 84 Carleo, Troyer (CR9) 2017; 355 Guther (CR17) 2020; 153 CR16 Geim (CR26) 2011; 83 CR13 CR11 Nolan, Gillan, Alfè, Allan, Manby (CR30) 2009; 80 Han, Zhang, Weinan (CR8) 2019; 399 Hermann, Schätzle, Noé (CR12) 2020; 12 Binnie (CR31) 2010; 82 Booth, Grüneis, Kresse, Alavi (CR6) 2013; 493 Chen, Motta, Ma, Zhang (CR38) 2021; 103 CR29 Sorella (CR46) 1998; 80 Lin, Zong, Ceperley (CR27) 2001; 64 Liao, Schraivogel, Luo, Kats, Alavi (CR34) 2021; 3 Motta (CR25) 2017; 7 Whitehead, Michael, Conduit (CR20) 2016; 94 CR24 CR23 CR22 Yao, Xu, Wang (CR41) 1996; 54 Jones (CR3) 2015; 87 CR21 Pfau, Spencer, Alexander, Matthews, Foulkes (CR10) 2020; 2 Li, Fan, Ren, Chen (CR15) 2022; 4 Kirkpatrick (CR4) 2021; 374 Ceperley, Alder (CR32) 1980; 45 35627_CR16 P López Ríos (35627_CR33) 2006; 74 X Li (35627_CR15) 2022; 4 N Yoshioka (35627_CR14) 2021; 4 A Annaberdiyev (35627_CR39) 2020; 16 D Pfau (35627_CR10) 2020; 2 35627_CR11 G Rajagopal (35627_CR45) 1995; 51 35627_CR13 TM Whitehead (35627_CR20) 2016; 94 G Yao (35627_CR41) 1996; 54 G Sugiyama (35627_CR42) 1989; 156 KT Williams (35627_CR5) 2020; 10 35627_CR7 H Shi (35627_CR19) 2021; 154 M Motta (35627_CR25) 2017; 7 35627_CR47 35627_CR48 35627_CR49 J Hermann (35627_CR12) 2020; 12 S Sorella (35627_CR46) 1998; 80 SJ Binnie (35627_CR31) 2010; 82 DM Ceperley (35627_CR32) 1980; 45 Q Sun (35627_CR50) 2018; 8 MG Medvedev (35627_CR36) 2017; 355 W Kohn (35627_CR1) 1999; 71 K Liao (35627_CR34) 2021; 3 AK Geim (35627_CR26) 2011; 83 J Han (35627_CR8) 2019; 399 RO Jones (35627_CR3) 2015; 87 C Lin (35627_CR27) 2001; 64 SJ Nolan (35627_CR30) 2009; 80 S Azadi (35627_CR44) 2019; 100 H Luo (35627_CR35) 2018; 14 WMC Foulkes (35627_CR18) 2001; 73 K Guther (35627_CR17) 2020; 153 GH Booth (35627_CR6) 2013; 493 35627_CR29 S Chen (35627_CR38) 2021; 103 J Kirkpatrick (35627_CR4) 2021; 374 G Carleo (35627_CR9) 2017; 355 S Chiesa (35627_CR28) 2006; 97 35627_CR2 35627_CR21 35627_CR22 35627_CR23 35627_CR24 M Dagrada (35627_CR43) 2016; 94 W Tang (35627_CR40) 2009; 21 L Stella (35627_CR37) 2011; 84 |
References_xml | – ident: CR22 – volume: 80 start-page: 4558 year: 1998 end-page: 4561 ident: CR46 article-title: Green function monte carlo with stochastic reconfiguration publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.80.4558 – ident: CR49 – volume: 100 start-page: 245142 year: 2019 ident: CR44 article-title: Efficient method for grand-canonical twist averaging in quantum monte carlo calculations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.100.245142 – volume: 14 start-page: 1403 year: 2018 end-page: 1411 ident: CR35 article-title: Combining the transcorrelated method with full configuration interaction quantum monte carlo: Application to the homogeneous electron gas publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.7b01257 – ident: CR16 – ident: CR29 – volume: 8 start-page: e1340 year: 2018 ident: CR50 article-title: Pyscf: the python-based simulations of chemistry framework publication-title: WIREs Comput. Mol. Sci. doi: 10.1002/wcms.1340 – volume: 12 start-page: 891 year: 2020 end-page: 897 ident: CR12 article-title: Deep-neural-network solution of the electronic Schrödinger equation publication-title: Nat. Chem. doi: 10.1038/s41557-020-0544-y – volume: 154 start-page: 024107 year: 2021 ident: CR19 article-title: Some recent developments in auxiliary-field quantum monte carlo for real materials publication-title: J. Chem. Phys. doi: 10.1063/5.0031024 – volume: 80 start-page: 165109 year: 2009 ident: CR30 article-title: Calculation of properties of crystalline lithium hydride using correlated wave function theory publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.165109 – volume: 73 start-page: 33 year: 2001 ident: CR18 article-title: Quantum monte carlo simulations of solids publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.73.33 – ident: CR21 – volume: 74 start-page: 066701 year: 2006 ident: CR33 article-title: Inhomogeneous backflow transformations in quantum monte carlo calculations publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.74.066701 – volume: 87 start-page: 897 year: 2015 end-page: 923 ident: CR3 article-title: Density functional theory: Its origins, rise to prominence, and future publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.87.897 – volume: 16 start-page: 1482 year: 2020 end-page: 1502 ident: CR39 article-title: Accurate atomic correlation and total energies for correlation consistent effective core potentials publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.9b00962 – volume: 10 start-page: 011041 year: 2020 ident: CR5 article-title: Direct comparison of many-body methods for realistic electronic Hamiltonians publication-title: Phys. Rev. X – volume: 54 start-page: 8393 year: 1996 end-page: 8397 ident: CR41 article-title: Pseudopotential variational quantum monte carlo approach to bcc lithium publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.8393 – volume: 156 start-page: 144 year: 1989 end-page: 168 ident: CR42 article-title: Ground-state properties of metallic lithium publication-title: Phys. A Stat. Mech. Appl. doi: 10.1016/0378-4371(89)90114-3 – ident: CR11 – volume: 4 start-page: 013021 year: 2022 ident: CR15 article-title: Fermionic neural network with effective core potential publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.4.013021 – volume: 45 start-page: 566 year: 1980 end-page: 569 ident: CR32 article-title: Ground state of the electron gas by a stochastic method publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.45.566 – volume: 355 start-page: 602 year: 2017 end-page: 606 ident: CR9 article-title: Solving the quantum many-body problem with artificial neural networks publication-title: Science doi: 10.1126/science.aag2302 – volume: 94 start-page: 245108 year: 2016 ident: CR43 article-title: Exact special twist method for quantum monte carlo simulations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.245108 – volume: 3 start-page: 033072 year: 2021 ident: CR34 article-title: Towards efficient and accurate ab initio solutions to periodic systems via transcorrelation and coupled cluster theory publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.3.033072 – ident: CR47 – volume: 51 start-page: 10591 year: 1995 end-page: 10600 ident: CR45 article-title: Variational and diffusion quantum monte carlo calculations at nonzero wave vectors: theory and application to diamond-structure germanium publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.51.10591 – volume: 97 start-page: 076404 year: 2006 ident: CR28 article-title: Finite-size error in many-body simulations with long-range interactions publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.076404 – ident: CR2 – volume: 355 start-page: 49 year: 2017 end-page: 52 ident: CR36 article-title: Density functional theory is straying from the path toward the exact functional publication-title: Science doi: 10.1126/science.aah5975 – volume: 2 start-page: 033429 year: 2020 ident: CR10 article-title: Ab initio solution of the many-electron schrödinger equation with deep neural networks publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.033429 – volume: 84 start-page: 245117 year: 2011 ident: CR37 article-title: Strong electronic correlation in the hydrogen chain: a variational monte carlo study publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.245117 – volume: 103 start-page: 075138 year: 2021 ident: CR38 article-title: Ab initio electronic density in solids by many-body plane-wave auxiliary-field quantum monte carlo calculations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.103.075138 – volume: 21 start-page: 084204 year: 2009 ident: CR40 article-title: A grid-based bader analysis algorithm without lattice bias publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/21/8/084204 – volume: 399 start-page: 108929 year: 2019 ident: CR8 article-title: Solving many-electron Schrödinger equation using deep neural networks publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.108929 – volume: 83 start-page: 851 year: 2011 end-page: 862 ident: CR26 article-title: Nobel lecture: random walk to graphene publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.83.851 – ident: CR23 – volume: 374 start-page: 1385 year: 2021 end-page: 1389 ident: CR4 article-title: Pushing the frontiers of density functionals by solving the fractional electron problem publication-title: Science doi: 10.1126/science.abj6511 – volume: 82 start-page: 165431 year: 2010 ident: CR31 article-title: Bulk and surface energetics of crystalline lithium hydride: benchmarks from quantum monte carlo and quantum chemistry publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.165431 – ident: CR48 – volume: 153 start-page: 034107 year: 2020 ident: CR17 article-title: NECI: N-electron configuration interaction with an emphasis on state-of-the-art stochastic methods publication-title: J. Chem. Phys. doi: 10.1063/5.0005754 – volume: 71 start-page: 1253 year: 1999 end-page: 1266 ident: CR1 article-title: Nobel lecture: electronic structure of matter—wave functions and density functionals publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.71.1253 – volume: 64 start-page: 016702 year: 2001 ident: CR27 article-title: Twist-averaged boundary conditions in continuum quantum monte carlo algorithms publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.64.016702 – volume: 4 start-page: 1 year: 2021 end-page: 8 ident: CR14 article-title: Solving quasiparticle band spectra of real solids using neural-network quantum states publication-title: Commun. Phys. doi: 10.1038/s42005-021-00609-0 – ident: CR13 – volume: 94 start-page: 035157 year: 2016 ident: CR20 article-title: Jastrow correlation factor for periodic systems publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.035157 – ident: CR7 – volume: 493 start-page: 365 year: 2013 end-page: 370 ident: CR6 article-title: Towards an exact description of electronic wavefunctions in real solids publication-title: Nature doi: 10.1038/nature11770 – ident: CR24 – volume: 7 start-page: 031059 year: 2017 ident: CR25 article-title: Towards the solution of the many-electron problem in real materials: equation of state of the hydrogen chain with state-of-the-art many-body methods publication-title: Phys. Rev. X – volume: 54 start-page: 8393 year: 1996 ident: 35627_CR41 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.8393 – volume: 87 start-page: 897 year: 2015 ident: 35627_CR3 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.87.897 – ident: 35627_CR23 – volume: 10 start-page: 011041 year: 2020 ident: 35627_CR5 publication-title: Phys. Rev. X – volume: 64 start-page: 016702 year: 2001 ident: 35627_CR27 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.64.016702 – volume: 4 start-page: 1 year: 2021 ident: 35627_CR14 publication-title: Commun. Phys. doi: 10.1038/s42005-021-00609-0 – volume: 51 start-page: 10591 year: 1995 ident: 35627_CR45 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.51.10591 – volume: 7 start-page: 031059 year: 2017 ident: 35627_CR25 publication-title: Phys. Rev. X – volume: 80 start-page: 165109 year: 2009 ident: 35627_CR30 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.165109 – volume: 12 start-page: 891 year: 2020 ident: 35627_CR12 publication-title: Nat. Chem. doi: 10.1038/s41557-020-0544-y – volume: 94 start-page: 245108 year: 2016 ident: 35627_CR43 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.245108 – volume: 399 start-page: 108929 year: 2019 ident: 35627_CR8 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.108929 – ident: 35627_CR47 – volume: 493 start-page: 365 year: 2013 ident: 35627_CR6 publication-title: Nature doi: 10.1038/nature11770 – volume: 153 start-page: 034107 year: 2020 ident: 35627_CR17 publication-title: J. Chem. Phys. doi: 10.1063/5.0005754 – volume: 21 start-page: 084204 year: 2009 ident: 35627_CR40 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/21/8/084204 – volume: 94 start-page: 035157 year: 2016 ident: 35627_CR20 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.035157 – volume: 103 start-page: 075138 year: 2021 ident: 35627_CR38 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.103.075138 – volume: 156 start-page: 144 year: 1989 ident: 35627_CR42 publication-title: Phys. A Stat. Mech. Appl. doi: 10.1016/0378-4371(89)90114-3 – ident: 35627_CR16 doi: 10.1038/s41467-023-37609-3 – volume: 82 start-page: 165431 year: 2010 ident: 35627_CR31 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.165431 – ident: 35627_CR22 doi: 10.1103/PhysRevLett.130.036401 – ident: 35627_CR21 doi: 10.1103/PhysRevB.107.235139 – volume: 14 start-page: 1403 year: 2018 ident: 35627_CR35 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.7b01257 – ident: 35627_CR11 – volume: 3 start-page: 033072 year: 2021 ident: 35627_CR34 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.3.033072 – ident: 35627_CR29 doi: 10.1103/PhysRevB.73.235124 – volume: 73 start-page: 33 year: 2001 ident: 35627_CR18 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.73.33 – ident: 35627_CR2 doi: 10.1017/CBO9780511805769 – volume: 97 start-page: 076404 year: 2006 ident: 35627_CR28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.076404 – volume: 45 start-page: 566 year: 1980 ident: 35627_CR32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.45.566 – volume: 80 start-page: 4558 year: 1998 ident: 35627_CR46 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.80.4558 – ident: 35627_CR24 – volume: 84 start-page: 245117 year: 2011 ident: 35627_CR37 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.245117 – volume: 374 start-page: 1385 year: 2021 ident: 35627_CR4 publication-title: Science doi: 10.1126/science.abj6511 – volume: 16 start-page: 1482 year: 2020 ident: 35627_CR39 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.9b00962 – volume: 100 start-page: 245142 year: 2019 ident: 35627_CR44 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.100.245142 – ident: 35627_CR13 doi: 10.1038/s41467-020-15724-9 – ident: 35627_CR48 doi: 10.1063/5.0139024 – volume: 4 start-page: 013021 year: 2022 ident: 35627_CR15 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.4.013021 – volume: 154 start-page: 024107 year: 2021 ident: 35627_CR19 publication-title: J. Chem. Phys. doi: 10.1063/5.0031024 – volume: 8 start-page: e1340 year: 2018 ident: 35627_CR50 publication-title: WIREs Comput. Mol. Sci. doi: 10.1002/wcms.1340 – ident: 35627_CR7 doi: 10.1038/s43588-021-00165-1 – volume: 355 start-page: 49 year: 2017 ident: 35627_CR36 publication-title: Science doi: 10.1126/science.aah5975 – volume: 355 start-page: 602 year: 2017 ident: 35627_CR9 publication-title: Science doi: 10.1126/science.aag2302 – ident: 35627_CR49 – volume: 71 start-page: 1253 year: 1999 ident: 35627_CR1 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.71.1253 – volume: 2 start-page: 033429 year: 2020 ident: 35627_CR10 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.033429 – volume: 83 start-page: 851 year: 2011 ident: 35627_CR26 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.83.851 – volume: 74 start-page: 066701 year: 2006 ident: 35627_CR33 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.74.066701 |
SSID | ssj0000391844 |
Score | 2.6226103 |
Snippet | Neural networks have been applied to tackle many-body electron correlations for small molecules and physical models in recent years. Here we propose an... Solving the many-body electronic structure of real solids is a grand challenge in condensed matter physics and materials science. Here authors present a... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7895 |
SubjectTerms | 639/766/119 639/766/94 Boundary conditions Condensed matter physics Electron gas Electronic structure Graphene Humanities and Social Sciences Learning algorithms Lithium Lithium hydrides Machine learning Materials science Molecular modelling multidisciplinary Neural networks Physics Science Science (multidisciplinary) Solids Wave functions |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEB-kIHgRv12tEsGbhm4-djZ7EdpiKR48Wegt5GvxQdknvleh_eudJPuefX5evG6yYfjNJDNDJr8BeG06dMkb5EGg4Toq5A5N4tKJlFwaTedKtcVHPD3TH8678xutvnJNWKUHrsAddNHJpMOI2XNLgR6NFi4IV1LxVN6Rk8-7kUyVM1gNlLro-ZVMq8zBSpczoRavo-y52PFEhbD_d1Hmr8WSP92YFkd0cg_uzhEkO6yS34dbaXoAt2tPyauH8O7Qs0WuCFoygj_M3bnYcmQUHl4wMrVFXLFvC8cylSV9mWohOMt9w9fXj-Ds5P2n41M-N0nggYKtNR90H6LG2FPoNxryR84PGCjQEDgKbL1qx-yjk_J9QNKXGGMcnYihD0a56NVj2JuWU3oKrOt86gbfOklxRfKDj21wsm_TQCm0iaEBsQHMhplBPDeyuLDlJlsZW0G2BLItIFvRwJvtP18qf8ZfZx9lPWxnZu7r8oEsws4WYf9lEQ3sb7Ro5w25spnl3qBSCht4tR2mrZTvR9yUlpdljmkHQ8s18KQqfSuJQkrlREeL9zvmsCPq7si0-FzoujPHk9Sqgbcbw_kh1p-hePY_oHgOd2S2eCG5lPuwt_56mV5QELX2L8t--Q70ZBWP priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxA6vxIxPnAiqIpeLAiUq9WX4FVqqS0myR4Nczdryplkdvke1YzszY89mefEPIS92AjU4D8xw0U0ECs6AjE5bHaGOvG5ujLT7D0bH6dNKclAO3qYRVbtfEvFCH0acz8oNEU65BSglvz76zlDUq3a6WFBrXyQ2OniaFdOnVx-WMJbGfa6XKvzK11AeTyivDHMIOomV8xx9l2v5_Yc2_Qyb_uDfN7mh1h9wuOJIezoq_S67F4R65OWeW_IlPObLTT_fJm0NH1ylCaKSoDl-yddGxpwgXTyma3jpM9Mfa0kRtiSXDHBhOUx7xza8H5Hj14cv7I1aSJjCP4GvDOtX6oCC0CAV7jf7Jug48Ag8OPYfaybpPPjtK13pA_fE-hN7y4FuvpQ1OPiR7wzjEx4Q2jYtN52orEGdE17lQeyvaOna4pdbBV4RvRWd8YRRPiS1OTb7ZltrM4jYobpPFbXhFXi3vnM18Gle2fpc0srRMXNi5YDz_asrUMk2wIirfQ8J2goMDrbj13ObDmthWZH-rT1Mm6GQuzakiL5ZqnFrpvsQOcbzIbXTdaeyuIo9m9S8jkYBbO95g5-2OYewMdbdmWH_L9N2J80koWZHXWxO6HNb_RfHk6q94Sm6JZNVcMCH2yd7m_CI-Q7i0cc_znPgNfiMQ4A priority: 102 providerName: ProQuest – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ji9VAEC6GGQQv4m50lBa8aTC9pNK5CE9xGN7Biw7Mrekt-mBIZN4bQX-91Z1Fno6C195oakl9na7-CuCFrtFGp7H0HHWpgsTSoo6lsDxGGztd25xt8QFPz9T6vD4_ADG_hclJ-5nSMn-m5-yw11uVXXrMPUfRlHTiOUpU7WTbR6vV-uN6-bOSOM-1UtMLmUrqaybvRaFM1n8dwvwzUfK329IchE5uw60JPbLVuN87cBD7u3BjrCf5_R68WTm2SdlAAyPR-6kyFxs6RtDwgpGZbcKWfdtYlmgsqaUfk8BZqhm--3Efzk7ef3p3Wk4FEkpPQGtXtqrxQWFoCPZ1mmKRdS16AhkcO46Vk1WX4nOUrvFIuuJdCJ3lwTdeSxucfACH_dDHR8Dq2sW6dZUVhCmia12ovBVNFVs6PuvgC-CzwIyf2MNTEYsLk2-xpTajkA0J2WQhG17Ay2XO15E745-j3yY9LCMT73VuGC4_m8kOTB2siMp3mHCc4OhQK249t_nHTGwKOJ61aCZn3JrEcK9RSokFPF-6yY3S3Yjt43CVx-iq1bRcAQ9HpS87kUjHOF7T4s2eOextdb-n33zJVN2J30koWcCr2XB-bevvonj8f8OfwE2RbJuLUohjONxdXsWnBJV27tnkGz8B1hYM-A priority: 102 providerName: Springer Nature |
Title | Ab initio calculation of real solids via neural network ansatz |
URI | https://link.springer.com/article/10.1038/s41467-022-35627-1 https://www.ncbi.nlm.nih.gov/pubmed/36550157 https://www.proquest.com/docview/2756863336 https://www.proquest.com/docview/2758098684 https://pubmed.ncbi.nlm.nih.gov/PMC9780243 https://doaj.org/article/5da2e4cf62644216b6841ac1a09330e7 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-NTaC9ID5HYFRB4g0CsZ3YzgOgrlqZKjEhoFLfIn8FKlUJtB1i_PWcnaRQ6HhJJH9E1n3kfmef7wCeypwrpyVPDOEyySzjieLSJVQR55SrZK5CtMU5P5tmk1k-24O-3FFHwNVO187Xk5ouFy9-fLt8gwr_qr0yLl-usqDubVw6pyJBb-gALZPwFQ3edXA__JlZgQ5N1t2d2T31EG4wjrCdeIP1h6kKGf13wdB_oyn_OlINlmp8C252EDMetjJxG_ZcfQeut0UnL-_C66GO5z5kqImRP6Yr3xU3VYz4cRGjLM7tKv4-V7HPdYktdRspHvvC4uuf92A6Pv00Oku6KgqJQTS2TopMGJtxKxAbVhINltIFN4hECK8ITzVLK2_EHdPCcGQoqaytFLFGGMmU1ew-7NdN7R5AnOfa5YVOFUXg4XShbWoUFakr0MeW1kRAeoKVpksx7itdLMpw1M1k2dK7RHqXgd4lieDZZs7XNsHGf0efeD5sRvrk2KGhWX4uO10rc6uoy0zFPdijhGsuM6IMUWH3xokIjnsulr3AlT4NvuSMMR7Bk0036po_QFG1ay7CGJkWEj8XwVHL9M1KeqGJQGyJw9ZSt3vq-ZeQz9sngaIZi-B5Lzi_l3U1KR5euYRHcEi9RBOaUHoM--vlhXuM0GmtB3BNzAQ-5fjtAA6Gw8nHCb5PTs_ff8DWER8NwqbEIOjNLzWCF5k |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw1CpFCC6InUABI8EJrMZLHOcAqCzDlJaeWqk311tgpCopzRRUPopv5NlJphqW3nqLbMey326_5_cQeqYKaYJVkjgqFRGeS2KkCoQZGoIJtSpMirbYkdM98Wm_2F9Bv8a3MDGscpSJSVD71sU78vWYplxJzrl8c_SNxKpR0bs6ltDoyWIrnP6AI1v3avM94Pc5Y5MPu--mZKgqQBxYJ3NSidJ5IX0JtlKtQIAbW0kHmpnKmsrc8ryOSi1wWzoJG6S197Wh3pVOceMth3kvocuCgyaPL9MnHxd3OjHbuhJieJuTc7XeiSSJ-pB5yUpCl_RfKhPwL9v27xDNP_y0Sf1NbqDrg92KN3pCu4lWQnMLXekrWZ7CV4okdd1t9HrD4lmMSGoxoN8N1cFwW2MwTw8xkPrMd_j7zOCYShNamj4QHce65fOfd9DehYDzLlpt2ibcR7gobCgqmxsGdk2wlfW5M6zMQwVHeOVdhugIOu2GDOaxkMahTp50rnQPbg3g1gncmmboxeKfoz5_x7mj30aMLEbG3NupoT3-ogdW1oU3LAhXy2hLMiqtVIIaR026HAplhtZGfOpBIHT6jHwz9HTRDawc_TOmCe1JGqPySsF0GbrXo3-xEi7hKEkLmLxcIoylpS73NLOvKV14zDHFBM_Qy5GEzpb1f1A8OH8XT9DV6e7nbb29ubP1EF1jkcIpI4ytodX58Ul4BKba3D5O_IHRwUUz5G-1CE6M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFS2AnFBvAkUMBKcINrYThznAKilrVqKVhWiUm_Gr8BKVVK6W1D5NL6OsZNstTx66y2yHcuel2c84xmA57IQ2hspUkuFTHPHRaqF9CnT1Hvta1noGG0xETsH-fvD4nAFfg1vYUJY5SATo6B2rQ135OOQplwKzrkY131YxP7m9tvjb2moIBU8rUM5jY5E9vzZDzTfZq93NxHXLxjb3vr0biftKwykFjWVeVrlpXW5cCXqTbVEYa5NJSye0lTUVGSGZ3U44Dw3pRW4WVo7V2vqbGkl185wnPcKrJbBKhrB6sbWZP_j4oYn5F6Xed6_1Mm4HM_yKJe6AHrBypQunYaxaMC_NN2_Azb_8NrGw3D7JtzotViy3pHdLVjxzW242tW1PMOvGFdqZ3fgzboh0xCf1BIkBtvXCiNtTVBZPSJI-FM3I9-nmoTEmtjSdGHpJFQxn_-8CweXAtB7MGraxj8AUhTGF5XJNEMtx5vKuMxqVma-QoNeOpsAHUCnbJ_PPJTVOFLRr86l6sCtENwqglvRBF4u_jnusnlcOHojYGQxMmTijg3tyRfVM7YqnGY-t7UImiWjwgiZU22pjldFvkxgbcCn6sXDTJ0TcwLPFt3I2MFboxvfnsYxMqskTpfA_Q79i5VwgYYlLXDycokwlpa63NNMv8bk4SHjFMt5Aq8GEjpf1v9B8fDiXTyFa8iM6sPuZO8RXGeBwClLGVuD0fzk1D9GvW1unvQMQuDzZfPkbwQJVB4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ab+initio+calculation+of+real+solids+via+neural+network+ansatz&rft.jtitle=Nature+communications&rft.au=Li%2C+Xiang&rft.au=Li%2C+Zhe&rft.au=Chen%2C+Ji&rft.date=2022-12-22&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft.spage=7895&rft_id=info:doi/10.1038%2Fs41467-022-35627-1&rft_id=info%3Apmid%2F36550157&rft.externalDocID=36550157 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |