Integrating single-cobalt-site and electric field of boron nitride in dechlorination electrocatalysts by bioinspired design

The construction of enzyme-inspired artificial catalysts with enzyme-like active sites and microenvironment remains a great challenge. Herein, we report a single-atomic-site Co catalyst supported by carbon doped boron nitride (BCN) with locally polarized B–N bonds (Co SAs/BCN) to simulate the reduct...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 12; no. 1; pp. 303 - 10
Main Authors Min, Yuan, Zhou, Xiao, Chen, Jie-Jie, Chen, Wenxing, Zhou, Fangyao, Wang, Zhiyuan, Yang, Jia, Xiong, Can, Wang, Ying, Li, Fengting, Yu, Han-Qing, Wu, Yuen
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 12.01.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The construction of enzyme-inspired artificial catalysts with enzyme-like active sites and microenvironment remains a great challenge. Herein, we report a single-atomic-site Co catalyst supported by carbon doped boron nitride (BCN) with locally polarized B–N bonds (Co SAs/BCN) to simulate the reductive dehalogenases. Density functional theory analysis suggests that the BCN supports, featured with ionic characteristics, provide additional electric field effect compared with graphitic carbon or N-doped carbon (CN), which could facilitate the adsorption of polarized organochlorides. Consistent with the theoretical results, the Co SAs/BCN catalyst delivers a high activity with nearly complete dechlorination (~98%) at a potential of −0.9 V versus Ag/AgCl for chloramphenicol (CAP), showing that the rate constant ( k ) contributed by unit mass of metal ( k /ratio) is 4 and 19 times more active than those of the Co SAs/CN and state-of-the-art Pd/C catalyst, respectively. We show that Co single atoms coupled with BCN host exhibit high stability and selectivity in CAP dechlorination and suppress the competing hydrogen evolution reaction, endowing the Co SAs/BCN as a candidate for sustainable conversion of organic chloride. Bridging the biocatalytic repertoire and the effective environmental remediation remains a great challenge. Here, inspired by the dehalogenases, the authors designed a single atom Co catalyst on carbon doped boron nitride that exhibits high stability and selectivity in dechlorination.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-20619-w