Engineering self-organising helium bubble lattices in tungsten

The self-organisation of void and gas bubbles in solids into superlattices is an intriguing nanoscale phenomenon. Despite the discovery of these lattices 45 years ago, the atomistics behind the ordering mechanisms responsible for the formation of these nanostructures are yet to be fully elucidated....

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 7; no. 1; pp. 7724 - 8
Main Authors Harrison, R. W., Greaves, G., Hinks, J. A., Donnelly, S. E.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 10.08.2017
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The self-organisation of void and gas bubbles in solids into superlattices is an intriguing nanoscale phenomenon. Despite the discovery of these lattices 45 years ago, the atomistics behind the ordering mechanisms responsible for the formation of these nanostructures are yet to be fully elucidated. Here we report on the direct observation via transmission electron microscopy of the formation of bubble lattices under He ion bombardment. By careful control of the irradiation conditions, it has been possible to engineer the bubble size and spacing of the superlattice leading to important conclusions about the significance of vacancy supply in determining the physical characteristics of the system. Furthermore, no bubble lattice alignment was observed in the directions pointing to a key driving mechanism for the formation of these ordered nanostructures being the two-dimensional diffusion of self-interstitial atoms.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-017-07711-w