Multi-functional DNA nanostructures that puncture and remodel lipid membranes into hybrid materials

Synthetically replicating key biological processes requires the ability to puncture lipid bilayer membranes and to remodel their shape. Recently developed artificial DNA nanopores are one possible synthetic route due to their ease of fabrication. However, an unresolved fundamental question is how DN...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 9; no. 1; pp. 1521 - 12
Main Authors Birkholz, Oliver, Burns, Jonathan R., Richter, Christian P., Psathaki, Olympia E., Howorka, Stefan, Piehler, Jacob
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 18.04.2018
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Synthetically replicating key biological processes requires the ability to puncture lipid bilayer membranes and to remodel their shape. Recently developed artificial DNA nanopores are one possible synthetic route due to their ease of fabrication. However, an unresolved fundamental question is how DNA nanopores bind to and dynamically interact with lipid bilayers. Here we use single-molecule fluorescence microscopy to establish that DNA nanopores carrying cholesterol anchors insert via a two-step mechanism into membranes. Nanopores are furthermore shown to locally cluster and remodel membranes into nanoscale protrusions. Most strikingly, the DNA pores can function as cytoskeletal components by stabilizing autonomously formed lipid nanotubes. The combination of membrane puncturing and remodeling activity can be attributed to the DNA pores’ tunable transition between two orientations to either span or co-align with the lipid bilayer. This insight is expected to catalyze the development of future functional nanodevices relevant in synthetic biology and nanobiotechnology. DNA nanopores can span lipid bilayers but how they interact with lipids is not known. Here the authors establish at single-molecule level the insertion mechanism and show that DNA nanopores can locally cluster and remodel membranes, and stabilize autonomously formed lipid nanotubes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-02905-w