FGL2 promotes tumor progression in the CNS by suppressing CD103+ dendritic cell differentiation
Few studies implicate immunoregulatory gene expression in tumor cells in arbitrating brain tumor progression. Here we show that fibrinogen-like protein 2 (FGL2) is highly expressed in glioma stem cells and primary glioblastoma (GBM) cells. FGL2 knockout in tumor cells did not affect tumor-cell proli...
Saved in:
Published in | Nature communications Vol. 10; no. 1; pp. 448 - 15 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
25.01.2019
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Few studies implicate immunoregulatory gene expression in tumor cells in arbitrating brain tumor progression. Here we show that fibrinogen-like protein 2 (FGL2) is highly expressed in glioma stem cells and primary glioblastoma (GBM) cells. FGL2 knockout in tumor cells did not affect tumor-cell proliferation in vitro or tumor progression in immunodeficient mice but completely impaired GBM progression in immune-competent mice. This impairment was reversed in mice with a defect in dendritic cells (DCs) or CD103
+
DC differentiation in the brain and in tumor-draining lymph nodes. The presence of FGL2 in tumor cells inhibited granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced CD103
+
DC differentiation by suppressing NF-κB, STAT1/5, and p38 activation. These findings are relevant to GBM patients because a low level of
FGL2
expression with concurrent high
GM-CSF
expression is associated with higher
CD8B
expression and longer survival. These data provide a rationale for therapeutic inhibition of FGL2 in brain tumors.
Fibrinogen-like protein 2 (FGL2) mediates immune suppression in glioblastoma (GBM). Here, the authors show that FGL-2 expressed by GBM cancer cells acts by suppressing the differentiation of CD103+ DC cells required to activate the anti-tumor CD8+ T cell response via blocking GM-CSF signalling at NFKB, STAT1/5 and p38 level. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-018-08271-x |