Trigonal multivalent polonium monolayers with intrinsic quantum spin Hall effects

Two-dimensional (2D) topological insulators, a type of the extraordinary quantum electronic states, have attracted considerable interest due to their unique electronic properties and promising potential applications. Recently, the successful fabrication of 2D Te monolayers ( i.e. tellurene) in exper...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 12; no. 1; p. 2129
Main Authors Bao, Hairui, Zhao, Bao, Zhang, Jiayong, Xue, Yang, Huan, Hao, Gao, Guanyi, Yang, Zhongqin
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 08.02.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Two-dimensional (2D) topological insulators, a type of the extraordinary quantum electronic states, have attracted considerable interest due to their unique electronic properties and promising potential applications. Recently, the successful fabrication of 2D Te monolayers ( i.e. tellurene) in experiments (Zhu et al., Phys Rev Lett 119:106101, 2017) has promoted researches on the group-VI monolayer materials. With first-principles calculations and tight-binding (TB) method, we investigate the structures and electronic states of 2D polonium (poloniumene), in which Po is a congener of Te. The poloniumene is found to have the tendency of forming a three-atomic-layer 1 T-MoS 2 -like structure (called trigonal poloniumene), namely, the central-layer Po atoms behave metal-like, while the two-outer-layer Po atoms are semiconductor-like. This unique multivalent behavior of the Po atoms is conducive to the structural stability of the monolayer, which is found to be an intrinsic quantum spin Hall insulator with a large band gap. The nontrivial topology originates from the p x , y - p z band inversion, which can be understood based on a built TB model. The poloniumene with different congener elements doped is also explored. Our results provide a thorough understanding of structures and electronic states of 2D polonium-related materials.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-06242-3