Asymmetric construction of tetrahedral chiral zinc with high configurational stability and catalytic activity
Chiral metal complexes show promise as asymmetric catalysts and optical materials. Chiral-at-metal complexes composed of achiral ligands have expanded the versatility and applicability of chiral metal complexes, especially for octahedral and half-sandwich complexes. However, Werner-type tetrahedral...
Saved in:
Published in | Nature communications Vol. 11; no. 1; p. 6263 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
09.12.2020
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Chiral metal complexes show promise as asymmetric catalysts and optical materials. Chiral-at-metal complexes composed of achiral ligands have expanded the versatility and applicability of chiral metal complexes, especially for octahedral and half-sandwich complexes. However, Werner-type tetrahedral complexes with a stereogenic metal centre are rarely used as chiral-at-metal complexes because they are too labile to ensure the absolute configuration of the metal centre. Here we report the asymmetric construction of a tetrahedral chiral-at-zinc complex with high configurational stability, using an unsymmetric tridentate ligand. Coordination/substitution of a chiral auxiliary ligand on zinc followed by crystallisation yields an enantiopure chiral-only-at-zinc complex (> 99% ee). The enantiomer excess remains very high at 99% ee even after heating at 70 °C in benzene for one week. With this configurationally stable zinc complex of the tridentate ligand, the remaining one labile site on the zinc can be used for a highly selective asymmetric oxa-Diels-Alder reaction (98% yield, 87% ee) without substantial racemisation.
Unlike traditional chiral metal complexes, which typically contain chiral ligands, in chiral-at-metal complexes chirality originates from a stereogenic metal center bound to achiral ligands. Herein, the authors use an unsymmetric tridentate ligand to construct a Werner-type tetrahedral chiral-at-zinc complex which displays high configurational stability and catalyzes an oxa-Diels-Alder reaction with high yield and enantioselectivity. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-020-20074-7 |