Imaging biological tissue with high-throughput single-pixel compressive holography

Single-pixel holography (SPH) is capable of generating holographic images with rich spatial information by employing only a single-pixel detector. Thanks to the relatively low dark-noise production, high sensitivity, large bandwidth, and cheap price of single-pixel detectors in comparison to pixel-a...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 12; no. 1; pp. 4712 - 12
Main Authors Wu, Daixuan, Luo, Jiawei, Huang, Guoqiang, Feng, Yuanhua, Feng, Xiaohua, Zhang, Runsen, Shen, Yuecheng, Li, Zhaohui
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 05.08.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Single-pixel holography (SPH) is capable of generating holographic images with rich spatial information by employing only a single-pixel detector. Thanks to the relatively low dark-noise production, high sensitivity, large bandwidth, and cheap price of single-pixel detectors in comparison to pixel-array detectors, SPH is becoming an attractive imaging modality at wavelengths where pixel-array detectors are not available or prohibitively expensive. In this work, we develop a high-throughput single-pixel compressive holography with a space-bandwidth- time product (SBP-T) of 41,667 pixels/s, realized by enabling phase stepping naturally in time and abandoning the need for phase-encoded illumination. This holographic system is scalable to provide either a large field of view (~83 mm 2 ) or a high resolution (5.80 μm × 4.31 μm). In particular, high-resolution holographic images of biological tissues are presented, exhibiting rich contrast in both amplitude and phase. This work is an important step towards multi-spectrum imaging using a single-pixel detector in biophotonics. Single-pixel holography generates holographic images with a single-pixel detector making this relatively inexpensive. Here the authors report a high-throughput single-pixel compressive holography method for imaging biological tissue which can either provide a large field of view or high resolution.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-24990-0